RNA-binding protein immunoprecipitation (RIP) is the RNA analog of the more well-known ChIP application (chromatin immunoprecipitation), which identifies DNA targets of DNA-binding proteins in an in-vivo cellular context. RIP can be used to identify specific RNA molecules (of many types) associated with specific nuclear or cytoplasmic binding proteins. These experiments involve immunoprecipitation of endogenously formed complexes of RNA-binding proteins and co-isolation of any RNA species associated with that RNA-binding protein. Purification of these RNA species allows interrogation and identification of mRNAs (and potentially non-coding RNAs associated with them) and can be directly measured using down stream applications including quantitative reverse transcription polymerase chain reaction (RT-PCR), microarray analysis (RIP-chip) and “deep-sequencing” or 2nd-generation sequencing based platforms (RIP-Seq).
Features & Benefits: -Protein A/G magnetic beads, optimized to bind nucleic acid-protein immune complexes -RNAse inhibitors and RNAse-free reagents -Positive and negative controls
Gene regulation plays a critical role in complex cellular processes such as development, differentiation, and cellular response to environmental changes. In addition to transcriptional regulation of gene expression by transcription factors, cells utilize post-transcriptional regulatory mechanisms. One such mechanism involves use of certain RNA-binding proteins (RBPs) to temporally and coordinately regulate the rate of mRNA translation of functionally related gene products. While the regulation of gene expression by transcription factors has been well studied over time, the post-transcriptional regulation of mRNAs by RBPs and the role of non-coding RNAs in this process is a relatively nascent field that remains to be thoroughly explored.