Phospho-4E-BP1 (Thr37/46) (236B4) Rabbit mAb (Alexa Fluor® 647 Conjugate) detects endogenous levels of 4E-BP1 only when phosphorylated at Thr37 and/or Thr46. This antibody may cross-react with 4E-BP2 and 4E-BP3 when phosphorylated at equivalent sites.
Source / Purification
Monoclonal antibody is produced by immunizing animals with a synthetic phosphopeptide corresponding to residues surrounding Thr37 and Thr46 of mouse 4E-BP1. The antibody was conjugated to Alexa Fluor® 647 under optimal conditions with an F/P ratio of 2-5.The Alexa Fluor® 647 dye is maximally excited by red light (e.g. 633 nm He-Ne laser). Antibody conjugates of the Alexa Fluor® 647 dye produce bright far-red-fluorescence emission with a peak at 665 nm.
Description
This Cell Signaling Technology (CST) antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometric analysis of human cells. The unconjugated antibody, Phospho-4E-BP1 (Thr37/46) (236B4) Rabbit mAb #2855, reacts with Phospho-4E-BP1 (Thr37/46) from human, mouse, rat and monkey. CST expects that phospho-4E-BP1 (Thr37/46) (236B4) Rabbit mAb (Alexa Fluor® 647 Conjugate) will also recognize Phospho-4E-BP1 in these species.
Background
Translation repressor protein 4E-BP1 (also known as PHAS-1) inhibits cap-dependent translation by binding to the translation initiation factor eIF4E. Hyperphosphorylation of 4E-BP1 disrupts this interaction and results in activation of cap-dependent translation (1). Both the PI3 kinase/Akt pathway and FRAP/mTOR kinase regulate 4E-BP1 activity (2,3). Multiple 4E-BP1 residues are phosphorylated in vivo (4). While phosphorylation by FRAP/mTOR at Thr37 and Thr46 does not prevent the binding of 4E-BP1 to eIF4E, it is thought to prime 4E-BP1 for subsequent phosphorylation at Ser65 and Thr70 (5).