

Rabbit (polyclonal) Anti-Rat Tumor Necrosis Factor alpha (TNF-α) Unconjugated

PRODUCT ANALYSIS SHEET

Catalog Number: ARC3012

Lot Number: See product label

Quantity/Volume: 0.5 mg/0.5 mL

Form of Antibody: Rabbit polyclonal immunoglobulins in phosphate buffered saline, pH 7.3.

Preservation: None, 0.22 micron sterile filtered.

Endotoxin: < 0.1 ng/μg as determined by Limulus Amebocyte Lysate Method.

Purification: Purified from rabbit serum by Protein A/G affinity chromatography.

Purity: > 95% as determined by SDS-PAGE analysis.

Immunogen: Purified recombinant rat TNF- α .

Specificity: Recognizes recombinant and natural rat TNF- α .

Applications: This antibody is suitable for use in Western and Dot blot applications.

Suggested Working

Dilutions:

For Dot blot applications, a 1:1000 dilution of the antibody will readily detect 5 ng of protein. The antibody has been shown to be non-neutralizing in the murine L929 rat TNF- α cytotoxic assay. The optimal concentration should be determined for each specific

application.

Storage: Store at -20°C. Upon initial thawing, apportion into working aliquots and store at -20°C.

Avoid repeated freeze/thaw cycles. Handle product under aseptic conditions at all times. For long term storage, sodium azide should be added as a preservative (Caution: sodium azide is a poisonous and hazardous substance. Handle with care and dispose of properly.)

References:

Erikson, J.M., G.L. Freeman and B. Chandrasekar (2003) Ultrasound-targeted antisense oligonucleotide attenuates ischemia/reperfusion-induced myocardial tumor necrosis factor-alpha. Journal of Molecular and Cellular Cardiology 35(1):119-130 (cites the use of this product in Western blot analysis).

Prabhu, S.D., B. Chandresekar, D.R. Murray, and G.L. Freeman (2000) β-Adrenergic blockade in developing heart failure: Effects on myocardial inflammatory cytokines, nitric oxide, and remodeling. Circulation May 2, 2000:2103-2109 (cites the use of this product in Western blot analysis).

Fang, L., B Nowicki, and C. Yallampalli (2001) Differential expression of uterine NO in pregnant and nonpregnant rats with intrauterine bacterial infection. Am. J. Physiol.-Regulatory Integrative and Comparative Physiology 280(5):R1356-R1363 (cites the use of this product in Western blot analysis).

Chandrasekar, B., J.F. Nelson, J.T. Colston, and G.L. Freeman (2001) Calorie restriction attenuates inflammatory responses to myocardial ischemia-reperfusion injury. Am. J. Physiol.-Heart and Circulatory Physiology 280(5):H2094-H2102 (cites the use of this product in Western blot analysis).

Chandrasekar, B., J.T. Colston, J. Geimer, D. Cortez, and G.L. Freeman (2000) Induction of nuclear factor κB but not κB -responsive cytokine expression during myocardial reperfusion injury after neutropenia. Free Radical Biol. Med. 28(11):1579-1588 (cites the use of this product in Western blot analysis).

Chandrasekar, B., P.C. Melby, H.M. Sarau, M. Raveendran, R.P. Perla, F.M. Marelli-Berg, N.O. Dulin, and I.S. Singh (2003) Chemokine-cytokine cross-talk - The ELR+ CXC chemokine LIX (CXCL5) amp lifies a proinflammatory cytokine response via a phosphatidylinositol 3-kinase-NF-kappa B pathway. J. Biol. Chem. 278(7):4675-4686 (cites the use of this product in Western blot analysis).

Eves, E.M., C. Skoczylas, K. Yoshida, E.S. Alnemri, and M.R. Rosner (2001) FGF induces a switch in death receptor pathways in neuronal cells. Journal of Neuroscience 21(14):4996-5006.

Wang, L., J.M. Antonini, Y. Rojanasakul, V. Castranova, J.F. Scabilloni, and R.R. Mercer (2002) Potential role of apoptotic macrophages in pulmonary inflammation and fibrosis. J. Cell. Physiol. 194:215-224 (cites the use of this product in IHC with paraffin embedded sections).