Qty: $100 \mu \mathrm{~g} / 200 \mu \mathrm{~L}$
Mouse anti-Plk1
Catalog No. 37-7100
Lot No.

Mouse anti-Plk1

FORM

This monoclonal antibody is supplied as a $200 \mu \mathrm{~L}$ aliquot at a concentration of $0.5 \mathrm{mg} / \mathrm{mL}$ in PBS, pH 7.4 , containing 0.1% sodium azide. This antibody is highly purified from mouse ascites by protein A chromatography.

CLONE: 36-298
ISOTYPE: Mouse IgG $_{1}$-kappa

IMMUNOGEN

Full-length human Plk1 (polo-like kinase 1), which shares 93-94\% amino acid sequence homology with mouse and rat Plk1.

SPECIFICITY

This antibody is specific for human Plk1. On Western blots, it identifies a band at $\sim 63 \mathrm{kDa}$.

REACTIVITY

Reactivity has been confirmed with human HeLa S3 and U-2 OS cells by Western blotting and immunofluorescence, with human HeLa S3 and HEK293 cells by immunoprecipitation, and with mouse NIH3T3 and rat NRK cells by immunofluorescence.

Sample	ELISA	Immuno- precipitation	Immuno- fluorescence	Western Blotting
Human	ND	++	+++	+++
Mouse	ND	ND	++	0
Rat	ND	ND	++	0
Xenopus	ND	ND	0	ND
Immunogen	+++	ND	ND	ND

Note: This antibody is recommended over Ms anti-Plk1, clone 36-206 (Cat. No. 37-7000) for immunofluorescence.

USAGE
Working concentrations for specific applications should be determined by the investigator. Appropriate concentrations will be affected by several factors, including secondary antibody affinity, antigen concentration, sensitivity of detection method, temperature and length of incubations, etc. The suitability of this antibody for applications other than those listed below has not been determined. The following concentration ranges are recommended starting points for this product.

$$
\begin{aligned}
\text { ELISA: } & 0.1-1.0 \mu \mathrm{~g} / \mathrm{mL} \\
\text { Immunoprecipitation: } & 5-10 \mu \mathrm{~g} / \mathrm{test} \\
\text { Immunofluorescence: } & 0.5-2 \mu \mathrm{~g} / \mathrm{test} \\
\text { Western Blotting: } & 2-3 \mu \mathrm{~g} / \mathrm{mL}
\end{aligned}
$$

STORAGE

Store at $2-8^{\circ} \mathrm{C}$ for up to one month. Store at $-20^{\circ} \mathrm{C}$ for long-term storage. Avoid repeated freezing and thawing.
(cont'd)
www.invitrogen.com
Invitrogen Corporation • 542 Flynn Rd • Camarillo •CA 93012•Tel: 800.955.6288•E-mail: techsupport@invitrogen.com

BACKGROUND

Polo-like kinases (Plks) are important regulators of cell cycle progression during M-phase. Named after the polo gene of Drosophila, Plks are involved in the assembly and dynamics of the mitotic spindle apparatus and in the activation and inactivation of CDK/cyclin complexes. In mammalian cells, Plk1 activity levels increase as cells approach M phase, with the peak of phosphoylation activity reached during mitosis. Known substrates include Cdc25C phosphatase, cyclin B, a cohesion subunit of the mitotic spindle, subunits of the anaphase promoting complex, mammalian kinesin-like protein 1 (MKLP-1) and other kinesin related motor proteins. These substrates demonstrate the multiple roles of Plk1 in promoting mitosis. ${ }^{1}$ Plk1 has a role in the regulation of tyrosine dephosphorylation of CDKs through activation of Cdc25C. These sites of phosphorylation are distinct from the site phosphorylated by Chk1 kinase, which inactivates Cdc25C. Activation of CDK1 leads to spindle formation and M phase entry. When vertebrate cells enter prophase, cyclin B1 translocates from the cytoplasm to the nucleus. Phosphorylation of cyclin B1 by Plk1 on a serine residue in the middle of the nuclear export signal sequence is essential for translocation. ${ }^{2,3}$ During M-phase exit, Plk1 appears to be an important up-regulator of the ubiquitindependent proteolytic degradation machinery that controls passage through mitosis. The mechanism for this is not clear, but Plk1 can directly phosphorylate three subunits of the anaphase-promoting complex (APC), provided that Plk1 has been preactivated by CDK1/cyclin B. Finally, through its role in phosphorylation of kinesin-like proteins, Plk1 may also be important for cytokinesis. Plk1 can transform rodent cells, ${ }^{4}$ and it is frequently overexpressed in tumors, making it a potential marker for diagnostic or prognostic purposes. ${ }^{5}$

REFERENCES

1. Nigg EA, et al. Curr Opin Cell Biol 10(6):776-783, 1998.
2. Toyoshima-Morimoto F, et al. Nature 410(6825):215-220, 2002.
3. Nigg EA. Nat Rev Mol Cell Biol 2(1):21-32, 2001.
4. Smith MR, et al. Biochem Biophys Res Commun 234:397-405, 1997.
5. Knecht R, et al. Cancer Res 59:2794-2797, 1999.

RELATED PRODUCTS

Product	Conjugate	Cat. No.
Protein A	Sepharose $^{\circledR} 4 \mathrm{~B}$	$10-1041$
rec-Protein G	Sepharose $^{\circledR} 4 \mathrm{~B}$	$10-1241$

Conjugate	ZyMAX $^{\text {TM }}$ $\mathbf{G o a t} \mathbf{x}$ Rabbit IgG $\mathbf{(H + L)}$	ZyMAX $^{\text {TM }}$ Goat x Mouse IgG $(\mathbf{H}+\mathrm{L})$
Purified	$81-6100$	$81-6500$
FITC	$81-6111$	$81-6511$
TRITC	$81-6114$	$81-6514$
Cy $^{\text {TM }} 3$	$81-6115$	$81-6515$
Cy 5	$81-6116$	$81-6516$
HRP	$81-6120$	$81-6520$
AP	$81-6122$	$81-6522$
Biotin	$81-6140$	$81-6540$

Zymed $^{\circledR}$ and ZyMAX ${ }^{\text {TM }}$ are trademarks of Zymed Laboratories Inc. Cy ${ }^{\text {TM }}$ and Sepharose ${ }^{\circledR}$ are registered trademarks of Amersham Biosciences Ltd.

For Research Use Only

