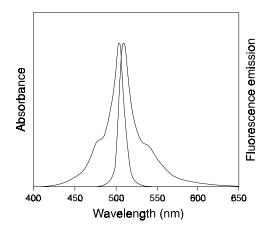


BODIPY[®] Lipid Probes


Introduction

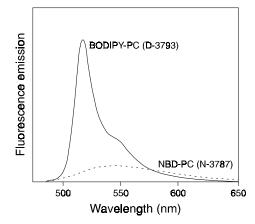
The intensely fluorescent BODIPY® (4,4-difluoro-3a,4adiaza-s-indacene) fluorophore is intrinsically lipophilic, unlike most other long-wavelength dyes. Consequently, probes incorporating this fluorophore are more likely to mimic the properties of natural lipids. Molecular Probes prepares BODIPY fatty acid, phospholipid and cholesteryl ester analogs that undergo native-like transport and metabolism in cells.¹ They are therefore effective tracers of lipid trafficking, as well as being useful general-purpose membrane probes. We also offer several nonpolar BODIPY dyes for staining neutral lipids, oils and polymers. Our extensive range of BODIPY dye-labeled sphingolipids is described in Product Information sheet MP01154. The spectroscopic properties of BODIPY lipid probes are summarized in Table 1. These and other data relating to the characterization of BODIPY fatty acids and phospholipids as membrane probes are described in more detail elsewhere.2

Product Descriptions

Fatty Acids

Biosynthetic incorporation of BODIPY fatty acids into BHK cells has been characterized by HPLC analysis.³ Incorporation levels into glycerophosphocholine were found to be greater than 90% for BODIPY 500/510 dodecanoic acid (D-3823). Microscopic examination of biosynthetically labeled cells revealed localized areas of red-shifted fluorescence. This long-wave-length fluorescence results from the accumulation of BODIPY dye–labeled neutral lipids in cytoplasmic droplets at concentrations sufficient to induce the formation of BODIPY excimers. Absorption of BODIPY FL and BODIPY 500/510 is well

Figure 1. Absorption and corrected fluorescence emission spectra of C_4 -BODIPY 500/510- C_9 (B-3824) in methanol.


Wavelength Range	gthFluorescence excitation maxima from500 nm to ~650 nm.Emission maximafrom 510 nm to ~665 nm.	
Spectral Bandwidth	Narrow (Figure 1).	
Fluorescence Stokes Shift	Small (Figure 1). Spectral overlap results in Förster transfer radius (R_o) = 57 Å for BODIPY FL.	
Fluorescence Quantum Yield	High. Typically 0.9 in fluid phase lipid bilayers.	
Molar Absorptivity	High. ϵ_{max} typically >80,000 cm ⁻¹ M ⁻¹ .	
Sensitivity to Environment	Generally low. Fluorescence quantum yields of fatty acids are not diminished in water. Fluorescence is quenched by collisional interactions with aromatic amino acids.	
Concentration Dependence	Long-wavelength excimer emission detectable at incorporation levels of about 1:10 mole:mole with respect to unlabeled phospholipid in lipid bilayers.	
* Data in this table are compiled, in part, from J Am Chem Soc 116, 7801 (1994) and Anal Biochem 198, 228 (1991).		

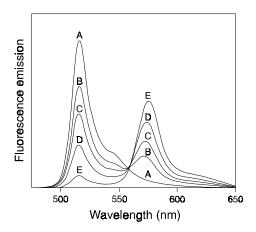
matched to argon-ion laser excitation at 488 nm, allowing analysis of cellular fatty acid uptake by flow cytometry and confocal microscopy.⁴ BODIPY FL dodecanoic acid (D-3822) has been employed to examine the co-transfer of lipids and membrane proteins from human neutrophils to the parasite *Schistosoma mansoni*.⁵ Researchers have also used BODIPY fatty acids and phospholipids to visualize compartmentalization of specific lipid classes in this parasite.⁶ Binding of BODIPY fatty acids to bovine serum albumin can be monitored by the accompanying fluorescence quenching caused by charge-transfer interactions with aromatic amino acid residues. BODIPY 581/591 C₁₁ (D-3861) can be used to measure antioxidant activity in lipid environments by exploiting its loss of fluorescence upon interaction with peroxyl radicals.^{7.8}

Glycerophospholipids with Labeled Acyl Chains

The nonpolar BODIPY fluorophore has been used to produce the longest-wavelength phospholipids with fluorescently labeled acyl chains currently available. The optical properties of BODIPY phospholipids are superior in several respects to those of NBD analogs,² as shown in Figure 2. The fluorescence quantum yield of BODIPY-PC analogs in fluid-phase diacylglycerophosphocholine liposomes is typically 0.9, around three times that of NBD-PC probes. This, coupled with their higher

Table 1. Spectral properties of BODIPY lipid probes.* Wavelength Fluorescence excitation maxima f

Figure 2. Fluorescence spectra (excitation at 475 nm) of β -BODIPY 500/510 C_{12} -HPC (solid line) and NBD- C_{12} -HPC (dashed line) incorporated in DOPC (dioctadecenoylglycerophosphocholine) liposomes at molar ratios of 1:400 mole:mole (labeled:unlabeled PC). The integrated intensities of the spectra are proportional to the relative fluorescence quantum yields of the two probes.


photostability and stronger absorptivity, represents a considerable advantage for BODIPY-PC in terms of photometric detectability. BODIPY PC analogs with the fluorophore attached to a short (pentanoyl) acyl chain (D-3803, D-3805) are expected to be more readily incorporated into cells because of higher spontaneous transfer rates.¹ β -BODIPY FL C₅-HPC (D-3803) is a functional analog of antineoplastic 1-*O*-alkyl ether phospholipids ⁹ and of arachidonyl phospholipids in fluorescence-based assays of cytosolic phospholipase A₂ (cPLA₂).¹⁰ The green-fluorescent BODIPY 500/510 and BODIPY FL analogs are effective fluorescence resonance energy transfer donors to longer-wavelength BODIPY probes (Figure 3) and acceptors from coumarin-labeled phospholipids or proteins.^{11,12}

Glycerophospholipids with Labeled Head Groups

Molecular Probes offers two glycerophosphoethanolamine conjugates modified with a BODIPY propionic acid attached to the terminal amine group via an amide linkage (D-3800, D-12656). Attachment of the BODIPY fluorophore to the head group does not produce major changes in its spectroscopic properties, since BODIPY fluorophores are largely insensitive to their environment (Table 1). These probes have obvious potential for studies of molecular recognition interactions at membrane surfaces. D-3800 and D-12656 probably can be used in conjunction with our anti-BODIPY FL antibody (A-5770).

Cholesteryl Esters

Cholesteryl esters are highly nonpolar lipids that are completely resistant to spontaneous intermembrane transfer. They

Figure 3. Energy transfer from β -BODIPY 500/510 C_{12} -HPC (peak at 516 nm) to BODIPY 558/568 C_{12} (peak at 572 nm) in DOPC (dioctadecenoylglycerophosphocholine) lipid bilayers using 475 nm excitation. Ratio of acceptors to donors is: A) 0; B) 0.2; C) 0.4; D) 0.8; E) 2.0.

are the major core lipid components of low- and high-density lipoproteins. Our BODIPY cholesteryl ester analog (C-3927) has been used to develop assays for cholesteryl ester transfer protein activity.¹³⁻¹⁶ It is also useful as a general nonexchangeable membrane marker and for tracing receptor-mediated endocytosis of lipoproteins and cholesterol transport by fluorescence microscopy.^{17,18} Two longer-wavelength BODIPY cholesteryl esters (C-12680, C-12681) extend the available wavelength options.

Neutral Lipid Stains

Molecular Probes offers three nonpolar derivatives of the BODIPY fluorophore with an unusual combination of nonpolar structure and long-wavelength absorption and fluorescence (D-3921, D-3922). Their fluorescence Stokes shifts are generally small (see Figure 1), extinction coefficients are typically greater than 80,000 cm⁻¹M⁻¹, and fluorescence quantum yields are very high (0.94 for D-3921 in methanol²). The fluorescence quantum yield of the BODIPY dyes is not diminished in water, except at higher concentrations, where aggregation may result in selfquenching. Staining with BODIPY 493/503 (D-3922) has been shown by flow cytometry to be more specific for cellular lipid droplets than staining with nile red.¹⁹ Mark Cooper at University of Washington has found that BODIPY 505/515 (D-3921) rapidly permeates cell membranes of live zebrafish embryos, selectively staining cytoplasmic yolk platelets. This staining provides dramatic contrast enhancement of cytoplasm relative to nucleoplasm and interstitial spaces, enabling dynamic developmental processes in the embryo to be followed using time-lapse confocal microscopy.20

References

Biochemistry 36, 8840 (1997);
 Anal Biochem 198, 228 (1991);
 Biochem Biophys Res Commun 187, 1594 (1992);
 Cytometry 23, 166 (1996);
 J Cell Sci 106, 485 (1993);
 J Lipid Res 36, 1 (1995);
 Anal Biochem 265, 290 (1998);
 FEBS Lett 453, 278 (1999);
 Biochim Biophys Acta 1390, 73 (1998);
 J Biol Chem 274, 19338 (1999);
 Biochem Biophys Res Commun 207, 508 (1995);
 Biochemistry 35, 3063 (1996);
 Lipids 29, 811 (1994);
 J Lipid Res 34, 1625 (1993);
 Chem Phys Lipids 77, 51 (1995);
 Biochemistry 34, 12560 (1995);
 J Biol Chem 271, 16208 (1996);
 J Biol Chem 270, 28767 (1995);
 Cytometry 17, 151 (1994);
 Methods Cell Biol 59, 179 (1999).

Product List Current prices may be obtained from our Web site or from our Customer Service Department.

Cat # Product Name

Unit Size

Fatty Acids

	I ally Adus				
B-3824	5-butyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-3-nonanoic acid (C_4 -BODIPY $^{\odot}$ 500/510 C_9)	1 mg			
D-3826	5-decyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-3-propionic acid (C_{10} -BODIPY® 500/510 C_{3})	1 mg			
D-3822	4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoic acid (BODIPY®FLC12)	1 mg			
D-3821	4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-hexadecanoic acid (BODIPY®FLC ₁₆)	1 mg			
D-3834	4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoic acid (BODIPY® FLC ₅)	1 mg			
D-3862	4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid (BODIPY $^{\circ}$ FL C_{11})	1 mg			
D-3832	4,4-difluoro-5,7-diphenyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoic acid (BODIPY® 530/550 C12)	1 mg			
D-3823	4,4-difluoro-5-methyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoic acid (C1-BODIPY® 500/510 C12)	1 mg			
D-3825	4,4-difluoro-5-octyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoic acid (C ₈ -BODIPY® 500/510 C ₅)	1 mg			
D-3860	4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-pentanoic acid (BODIPY $^{\otimes}$ 581/591C ₅)	1 mg			
D-3861	4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid (BODIPY®581/591 C ₁₁)	1 mg			
D-3835	4,4-difluoro-5-(2-thienyl)-4-bora-3a,4a-diaza-s-indacene-3-dodecanoic acid (BODIPY® 558/568 C ₁₂)	1 mg			

Acyl-Modified Glycerophosphocholines

D-3792	2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoyl)-1-hexadecanoyl- <i>sn</i> -glycero-3-phosphocholine (β-BODIPY [®] FL C ₁₂ -HPC)	100 µg	
D-3803	2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl- <i>sn</i> -glycero-3-phosphocholine (β-BODIPY [®] FL C ₅ -HPC)	100 µg	
D-3793	2-(4,4-difluoro-5-methyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoyl)-1-hexadecanoyl- <i>sn</i> -glycero-3-phosphocholine (β-BODIPY [®] 500/510 C ₁₂ -HPC)	100 µg	
D-3795			
D-3806	2-(4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl- <i>sn</i> -glycero-3- phosphocholine (β-BODIPY [®] 581/591 C ₅ -HPC)	100 µg	
	Acyl-Modified Phosphatidic Acid		
D-3805	2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-phosphate,		

diammonium salt (β-BODIPY [®] FL C ₅ -HPA)	100 µg
--	--------

Head-Group Labeled Glycerophosphoethanolamines

	······································	
D-3800	N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionyl)-1,2-dihexadecanoyl- <i>sn</i> -glycero-3-phospho- ethanolamine, triethylammonium salt (BODIPY [®] FL DHPE)	100 µg
D-12656	N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionyl)-1,2-dihexanoyl- <i>sn</i> -glycero-3-phosphoethanolamine, triethylammonium salt (BODIPY [®] FL dicaproyl PE)	100 µg
	Nonpolar BODIPY Probes	
C-3927	cholesteryl 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoate (cholesteryl BODIPY® FLC ₁₂)	1 mg
C-12680	cholesteryl 4,4-difluoro-5-(4-methoxyphenyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoate	
	(cholesteryl BODIPY [®] 542/563 C ₁₁)	1 mg
C-12681	cholesteryl 4,4-difluoro-5-(2-pyrrolyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoate (cholesteryl BODIPY® 576/589 C11) 1 mg	
D-3922	4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene (BODIPY® 493/503)	10 mg
D-3921	4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (BODIPY®505/515)	10 mg

Contact Information

Further information on Molecular Probes' products, including product bibliographies, is available from your local distributor or directly from Molecular Probes. Customers in Europe, Africa and the Middle East should contact our office in Leiden, the Netherlands. All others should contact our Technical Assistance Department in Eugene, Oregon.

Please visit our Web site - www.probes.com - for the most up-to-date information

Molecular Probes, Inc.	Molecular Probes Europe BV
29851 Willow Creek Road, Eugene, OR 97402	PoortGebouw, Rijnsburgerweg 10
Phone: (541) 465-8300 • Fax: (541) 344-6504	2333 AA Leiden, The Netherlands
	Phone: +31-71-5233378 • Fax: +31-71-5233419
Customer Service: 6:00 am to 4:30 pm (Pacific Time)	
Phone: (541) 465-8338 • Fax: (541) 344-6504 • order@probes.com	Customer Service: 9:00 to 16:30 (Central European Time)
	Phone: +31-71-5236850 • Fax: +31-71-5233419
Toll-Free Ordering for USA and Canada:	eurorder@probes.nl
Order Phone: (800) 438-2209 • Order Fax: (800) 438-0228	
	Technical Assistance: 9:00 to 16:30 (Central European Time)
Technical Assistance: 8:00 am to 4:00 pm (Pacific Time)	Phone: +31-71-5233431 • Fax: +31-71-5241883
Phone: (541) 465-8353 • Fax: (541) 465-4593 • tech@probes.com	eurotech@probes.nl

Molecular Probes' products are high-quality reagents and materials intended for research purposes only. These products must be used by, or directly under the supervision of, a technically qualified individual experienced in handling potentially hazardous chemicals. Please read the Material Safety Data Sheet provided for each product; other regulatory considerations may apply.

Several of Molecular Probes' products and product applications are covered by U.S. and foreign patents and patents pending. Our products are not available for resale or other commercial uses without a specific agreement from Molecular Probes, Inc. We welcome inquiries about licensing the use of our dyes, trademarks or technologies. Please submit inquiries by e-mail to busdev@probes.com. All names containing the designation [®] are registered with the U.S. Patent and Trademark Office.

Copyright 2003, Molecular Probes, Inc. All rights reserved. This information is subject to change without notice.