

Anti-FITC MicroBeads lyophilized

Order no. 130-097-050

Contents

- 1. Description
 - 1.1 Principle of the MACS® Separation
 - 1.2 Background information
 - 1.3 Applications
 - 1.4 Reagent and instrument requirements
- 2. Protocol
 - 2.1 Reconstitution of MicroBeads
 - 2.2 Sample preparation
 - 2.3 Magnetic labeling
 - 2.4 Magnetic separation
- 3. Example of a separation using Anti-FITC MicroBeads

1. Description

Components 1 vial Anti-FITC MicroBeads, lyophilized:

MicroBeads conjugated to monoclonal anti-FITC Isomer-1 antibodies (isotype: mouse

IgG1).

2 mL Reconstitution Buffer

Capacity For 2×10° total cells.

Product format Lyophilized MicroBeads.

Reconstitution Buffer contains stabilizer and

0.05% sodium azide.

Storage Store protected from light at 2-8 °C. Do not

freeze. The expiration date is indicated on the vial label. For information about reconstitution of the lyophilized MicroBeads and storage after

reconstitution refer to chapter 2.1.

1.1 Principle of the MACS® Separation

First, the cells are stained with a FITC-conjugated primary antibody or ligand. Subsequently, the cells are magnetically labeled with Anti-FITC MicroBeads. Then, the cell suspension is loaded on a MACS* Column which is placed in the magnetic field of a MACS Separator. The magnetically labeled cells are retained in the column while the unlabeled cells run through. After removal of the column from the magnetic field, the magnetically retained cells can be eluted as the positively selected cell fraction.

1.2 Background information

Anti-FITC MicroBeads has been developed for the separation of cells according to surface markers labeled with FITC-conjugated antibodies, peptides, or ligands. After separation the FITC-labeled cells can be detected by flow cytometry or fluorescence microscopy.

▲ Note: Magnetic labeling with Anti-FITC MicroBeads may reduce the fluorescence intensity of the FITC staining.

1.3 Applications

- Positive selection or depletion of cells labeled with FITC-conjugated antibodies.
- Positive selection or depletion of cells labeled with FITC-conjugated peptides or ligands.

1.4 Reagent and instrument requirements

- Buffer: Prepare a solution containing phosphate-buffered saline (PBS), pH 7.2, 0.5% bovine serum albumin (BSA), and 2 mM EDTA by diluting MACS BSA Stock Solution (#130-091-376) 1:20 with autoMACS* Rinsing Solution (#130-091-222). Keep buffer cold (2–8 °C). Degas buffer before use, as air bubbles could block the column.
 - ▲ Note: EDTA can be replaced by other supplements such as anticoagulant citrate dextrose formula-A (ACD-A) or citrate phosphate dextrose (CPD). BSA can be replaced by other proteins such as human serum albumin, human serum, or fetal bovine serum (FBS). Buffers or media containing Ca²⁺ or Mg²⁺ are not recommended for use.
- MACS Columns and MACS Separators: Cells labeled with Anti-FITC MicroBeads can be enriched by using MS, LS, or XS Columns or depleted with the use of LD, CS, or D Columns. Cells that strongly express the FITC-labeled antigen can also be depleted using MS, LS, or XS Columns. Positive selection or depletion can also be performed by using the autoMACS Pro or the autoMACS Separator.

Column	Max. number of labeled cells	Max. number of total cells	Separator
Positive selection			
MS	10 ⁷	2×10 ⁸	MiniMACS, OctoMACS, VarioMACS, SuperMACS II
_S	10 ⁸	2×10 ⁹	MidiMACS, QuadroMACS, VarioMACS, SuperMACS II
XS	10 ⁹	2×10 ¹⁰	SuperMACS II
Depletion			
_D	10 ⁸	5×10 ⁸	MidiMACS, QuadroMACS, VarioMACS, SuperMACS II
CS	2×10 ⁸		VarioMACS, SuperMACS II
D	10 ⁹		SuperMACS II
Positive selection or depletion			
autoMACS	2×10 ⁸	4×10 ⁹	autoMACS Pro, autoMACS

- ▲ Note: Column adapters are required to insert certain columns into the VarioMACS™ or SuperMACS™ II Separators. For details refer to the respective MACS Separator data sheet.
- FITC-conjugated primary antibody, peptide or ligand.
 - ▲ Note: Use primary reagents conjugated with FITC Isomer-1 only. Most commercially antibody suppliers use FITC Isomer-1.
- (Optional) Propidium Iodide Solution (#130-093-233) or 7-AAD for flow cytometric exclusion of dead cells.

- (Optional) Dead Cell Removal Kit (# 130-090-101) for the depletion of dead cells.
- (Optional) Pre-Separation Filters, 30 μm (# 130-041-407) to remove cell clumps.

2. Protocol

2.1 Reconstitution of MicroBeads

Reconstitute the lyophilized MicroBeads by adding all Reconstitution Buffer to the vial. Mix by pipetting up and down until resuspended. After reconstitution the MicroBeads are stable for 9 months at 2–8 °C. Write the new expiration date after reconstitution on the vial label.

2.2 Sample preparation

When working with anticoagulated peripheral blood or buffy coat, peripheral blood mononuclear cells (PBMCs) should be isolated by density gradient centrifugation, for example, using Ficoll-Paque[™].

▲ Note: To remove platelets after density gradient separation, resuspend cell pellet in buffer and centrifuge at 200×g for 10−15 minutes at 20 °C. Carefully aspirate supernatant. Repeat washing step.

When working with tissues or lysed blood, prepare a single-cell suspension using standard methods.

For details refer to the protocols section at www.miltenyibiotec.com/protocols.

▲ Dead cells may bind non-specifically to MACS MicroBeads. To remove dead cells, we recommend using density gradient centrifugation or the Dead Cell Removal Kit (# 130-090-101).

2.3 Magnetic labeling

- ▲ Work fast, keep cells cold, and use pre-cooled solutions. This will prevent capping of antibodies on the cell surface and non-specific cell labeling.
- ▲ Volumes for magnetic labeling given below are for up to 10^7 total cells. When working with fewer than 10^7 cells, use the same volumes as indicated. When working with higher cell numbers, scale up all reagent volumes and total volumes accordingly (e.g. for 2×10^7 total cells, use twice the volume of all indicated reagent volumes and total volumes).
- \blacktriangle For optimal performance it is important to obtain a single-cell suspension before magnetic labeling. Pass cells through 30 μm nylon mesh (Pre-Separation Filters, 30 μm # 130-041-407) to remove cell clumps which may clog the column. Moisten filter with buffer before use.
- ▲ The recommended incubation temperature is 2–8 °C. Higher temperatures and/or longer incubation times may lead to non-specific cell labeling. Working on ice may require increased incubation times.
- ▲ Primary FITC-conjugated antibodies should be titrated to determine the optimal staining dilution. Staining should not increase fluorescence intensity of the negative population.

- 1. After preparation of single-cell suspension count cells and centrifuge cell sample.
- 2. Resuspend cell pellet and stain with the primary FITC-conjuated antibody according to the manufacturer's recommendations. For MACS FITC-conjugated antibodies, resuspend in 100 μL buffer per 10^7 total cells and add 10 μL FITC-conjugate.
- 3. Mix well and incubate for 10 minutes in the refrigerator (2–8 °C) or according to the manufacturer's recommendations.
- Wash cells to remove unbound primary antibody by adding 1−2 mL of buffer per 10⁷ cells and centrifuge at 300×g for 10 minutes.
 - ▲ Note: The optimal relative centrifugal force (RCF) and centrifugation time may be different depending on the cell sample.
- 5. (Optional) Repeat washing step.
- Aspirate supernatant completely and resuspend cell pellet in 90 μL of buffer per 10⁷ total cells.
- 7. Add 10 µL of Anti-FITC MicroBeads per 10⁷ total cells. ▲ Note: The concentration of Anti-FITC MicroBeads used to achieve optimal magnetic separation is dependent on the intensity of FITC-conjugated antibody staining and on the frequency of target cells in suspension. Dimly FITC-stained target cells require a higher concentration of Anti-FITC MicroBeads to achieve optimal magnetic labeling and separation.
- Mix well and incubate for 15 minutes in the refrigerator (2-8 °C).
- 9. Wash cells by adding 1-2 mL of buffer per 10^7 cells and centrifuge at $300\times g$ for 10 minutes. Aspirate supernatant completely.
 - ▲ Note: The optimal relative centrifugal force (RCF) and centrifugation time may be different depending on the cell sample.
- 10. Resuspend up to 10^8 cells in 500 μ L of buffer.
 - ▲ Note: For higher cell numbers, scale up buffer volume accordingly.
 - \blacktriangle Note: For depletion with LD Columns, resuspend up to 1.25×10 8 cells in 500 μL of buffer.
- 11. Proceed to magnetic separation (2.3).

2.4 Magnetic separation

- ▲ Choose an appropriate MACS Column and MACS Separator according to the number of total cells and the number of magnetically labeled cells. For details refer to the table in section 1.4.
- ▲ Always wait until the column reservoir is empty before proceeding to the next step.

Magnetic separation with MS or LS Columns

- Place column in the magnetic field of a suitable MACS Separator. For details refer to the respective MACS Column data sheet.
- Prepare column by rinsing with the appropriate amount of buffer:

MS: $500 \mu L$ LS: 3 mL

- 3. Apply cell suspension onto the column. Collect flow-through containing unlabeled cells.
- 4. Wash column with the appropriate amount of buffer. Collect unlabeled cells that pass through and combine with the flow-through from step 3.

MS:
$$3\times500 \mu L$$
 LS: $3\times3 mL$

- ▲ Note: Perform washing steps by adding buffer aliquots only when the column reservoir is empty.
- 5. Remove column from the separator and place it on a suitable collection tube.
- 6. Pipette the appropriate amount of buffer onto the column. Immediately flush out the magnetically labeled cells by firmly pushing the plunger into the column.

7. (Optional) To increase the purity of the magnetically labeled fraction, it can be enriched over a second MS or LS Column. Repeat the magnetic separation procedure as described in steps 1 to 6 by using a new column.

Magnetic separation with XS Columns

For instructions on the column assembly and the separation refer to the XS Column data sheet.

Depletion with LD Columns

- Place LD Column in the magnetic field of a suitable MACS Separator. For details refer to the LD Column data sheet.
- 2. Prepare column by rinsing with 2 mL of buffer.
- 3. Apply cell suspension onto the column.
- 4. Collect unlabeled cells that pass through and wash column with 2×1 mL of buffer. Collect total flow-through; this is the unlabeled cell fraction. Perform washing steps by adding buffer two times. Only add new buffer when the column reservoir is empty.

Depletion with CS Columns

- Assemble CS Column and place it in the magnetic field of a suitable MACS Separator. For details refer to the CS Column data sheet.
- 2. Prepare column by filling and rinsing with 60 mL of buffer. Attach a 22G flow resistor to the 3-way stopcock of the assembled column. For details refer to the CS Column data sheet.
- 3. Apply cell suspension onto the column.
- Collect unlabeled cells that pass through and wash column with 30 mL buffer from the top. Collect total flow-through; this is the unlabeled cell fraction.

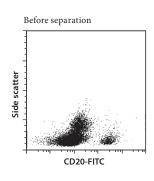
Depletion with D Columns

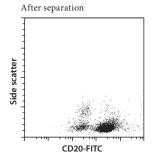
For instructions on column assembly and separation refer to the D Column data sheet.

Magnetic separation with the autoMACS $^{\circ}$ Pro Separator or the autoMACS $^{\circ}$ Separator

- ▲ Refer to the respective user manual for instructions on how to use the autoMACS* Pro Separator or the autoMACS Separator.
- ▲ Buffers used for operating the autoMACS Pro Separator or the autoMACS Separator should have a temperature of \geq 10 °C.
- ▲ Program choice depends on the isolation strategy, the strength of magnetic labeling, and the frequency of magnetically labeled cells. For details refer to the section describing the cell separation programs in the respective user manual.

Magnetic separation with the autoMACS® Pro Separator


- 1. Prepare and prime the instrument.
- 2. Apply tube containing the sample and provide tubes for collecting the labeled and unlabeled cell fractions. Place sample tube in row A of the tube rack and the fraction collection tubes in rows B and C.
- 3. Choose an appropriate program.


Magnetic separation with the autoMACS® Separator

- 1. Prepare and prime the instrument.
- Apply tube containing the sample and provide tubes for collecting the labeled and unlabeled cell fractions. Place sample tube at the uptake port and the fraction collection tubes at port negl and the appropriate port for the positive fraction
- 3. Choose an appropriate program.

3. Example of a separation using Anti-FITC MicroBeads

Anti-FITC MicroBeads were reconstituted as described in 2.1. Human PBMCs were separated using Anti-FITC MicroBeads, an MS Column, and a MiniMACS™ Separator. Cells were fluorescently stained with CD20-FITC (# 130-091-108) and analyzed by flow cytometry using the MACSQuant® Analyzer. Cell debris and dead cells were excluded from the analysis based on scatter signals and propidium iodide fluorescence.

All protocols and data sheets are available at www.miltenyibiotec.com.

Warnings

Reagents contain sodium azide. Under acidic conditions sodium azide yields hydrazoic acid, which is extremely toxic. Azide compounds should be diluted with running water before discarding. These precautions are recommended to avoid deposits in plumbing where explosive conditions may develop.

Warranty

The products sold hereunder are warranted only to be free from defects in workmanship and material at the time of delivery to the customer. Miltenyi Biotec GmbH makes no warranty or representation, either expressed or implied, with respect to the fitness of a product for a particular purpose. There are no warranties, expressed or implied, which extend beyond the technical specifications of the products. Miltenyi Biotec GmbH's liability is limited to either replacement of the products or refund of the purchase price. Miltenyi Biotec GmbH is not liable for any property damage, personal injury or economic loss caused by the product.

autoMACS, MACS, and MACSQuant are registered trademarks and MidiMACS, MiniMACS, OctoMACS, QuadroMACS, SuperMACS, and VarioMACS are trademarks of Miltenyi Biotec GmbH.

Ficoll-Paque is a trademark of GE Healthcare companies.

Copyright © 2013 Miltenyi Biotec GmbH. All rights reserved.