Miltenyi Biotec

Contents

1. Description
1.1 Principle of the MACS ${ }^{\star}$ Separation
1.2 Background information
1.3 Applications
1.4 Reagent and instrument requirements
2. Protocol
2.1 Sample preparation
2.2 Magnetic labeling
2.3 Magnetic separation
2.4 Cell separation with the autoMACS ${ }^{\circledR}$ Pro Separator
3. Example of a separation using the CD90.2 MicroBeads
4. References

Warnings

Reagents contain sodium azide. Under acidic conditions sodium azide yields hydrazoic acid, which is extremely toxic. Azide compounds should be diluted with running water before discarding. These precautions are recommended to avoid deposits in plumbing where explosive conditions may develop.

1. Description

This product is for research use only.
Components $\quad 2 \mathrm{~mL}$ CD90.2 MicroBeads, mouse: MicroBeads conjugated to monoclonal antimouse CD90.2 antibodies (isotype: rat IgG2b).
Capacity For 2×10^{9} total cells, up to 200 separations.
Product format CD90.2 MicroBeads are supplied in buffer containing stabilizer and 0.05% sodium azide.
Storage Store protected from light at $2-8{ }^{\circ} \mathrm{C}$. Do not freeze. The expiration date is indicated on the vial label.

1.1 Principle of the MACS ${ }^{\circledR}$ Separation

First, the CD90.2 (Thy1.2) ${ }^{+}$cells are magnetically labeled with CD90.2 MicroBeads. Then, the cell suspension is loaded onto a MACS ${ }^{\star}$ Column, which is placed in the magnetic field of a MACS Separator. The magnetically labeled CD90.2 ${ }^{+}$cells are retained within the column. The unlabeled cells run through; this cell fraction is thus depleted of CD90.2 2^{+}cells. After removing the column from the magnetic field, the magnetically retained CD90.2 ${ }^{+}$ cells can be eluted as the positively selected cell fraction.

CD90.2 MicroBeads mouse

1.2 Background information

The mouse CD90.2 alloantigen, also known as Thyl.2, is a pan-T cell marker for the most common inbred mouse strains. CD90.2 is expressed on thymcoytes, peripheral T cells, on some intraepithelial T cells, and at lower levels on early hematopoietic stem cells in bone marrow.
Mouse CD90.2 MicroBeads are suitable for positive selection or depletion of mouse T lymphocytes from single-cell suspensions of lymphoid and non-lymphoid tissues or peripheral blood, in CD90.2-expressing mouse strains. The mouse CD90.2 antibody does not cross-react with CD90.1 (Thyl.1).

1.3 Applications

- Isolation of T cells for the analysis of their cytokine expression in a mouse model of lung fibrosis, ${ }^{1}$ or after adoptive transfer of T cells from wild-type and knock-out mice into immunodeficient mice. ${ }^{2}$
- Isolation of tumor-infiltrating T cells to evaluate their immunotherapeutic potential, ${ }^{3}$ or functional properties. ${ }^{4}$

1.4 Reagent and instrument requirements

- Buffer: Prepare a solution containing phosphate-buffered saline (PBS), pH 7.2, 0.5% bovine serum albumin (BSA), and 2 mM EDTA by diluting MACS BSA Stock Solution (\# 130-091-376) 1:20 with autoMACS® Rinsing Solution (\# 130-091-222). Keep buffer cold ($2-8^{\circ} \mathrm{C}$). Degas buffer before use, as air bubbles could block the column.
- Note: EDTA can be replaced by other supplements such as anticoagulant citrate dextrose formula-A (ACD-A) or citrate phosphate dextrose (CPD). BSA can be replaced by other proteins such as mouse serum albumin, mouse serum, or fetal bovine serum (FBS). Buffers or media containing Ca^{2+} or Mg^{2+} are not recommended for use.
- MACS Columns and MACS Separators: CD90.2 ${ }^{+}$cells can be enriched by using MS, LS, or XS or depleted with the use of LD, CS, or D Columns. Cells that strongly express the CD90.2 antigen can also be depleted using MS, LS, or XS Columns. Positive selection or depletion can also be performed by using the autoMACS Pro Separator.

Column	Max. number of labeled cells	Max. number of total cells	Separator
Positive selection			
MS	10^{7}	2×10^{8}	MiniMACS, OctoMACS, VarioMACS, SuperMACS II
LS	10^{8}	2×10^{9}	MidiMACS, QuadroMACS, VarioMACS, SuperMACS II
XS	10^{9}	2×10^{10}	SuperMACS II
Depletion			
LD	10^{8}	5×10^{8}	MidiMACS, QuadroMACS, VarioMACS, SuperMACS II

Miltenyi Biotec GmbH

Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
Phone +49 2204 8306-0, Fax +49 220485197
macs@miltenyibiotec.de
www.miltenyibiotec.com

CS	2×10^{8}	VarioMACS, SuperMACS II
D	10^{9}	SuperMACS II

Positive selection or depletion

autoMACS $2 \times 10^{8} \quad 4 \times 10^{9} \quad$ autoMACS Pro

A Note: Column adapters are required to insert certain columns into the VarioMACS ${ }^{m \mathrm{~m}}$ or SuperMACS ${ }^{m \mathrm{~m}}$ II Separators. For details refer to the respective MACS Separator data sheet.

- (Optional) Fluorochrome-conjugated CD90.2 antibodies for flow cytometric analysis, e.g., CD90.2-FITC (\# 130-102-452). For more information about antibodies refer to www.miltenyibiotec.com/antibodies.
- (Optional) Propidium Iodide Solution (\# 130-093-233) or 7-AAD for flow cytometric exclusion of dead cells.
- (Optional) Dead Cell Removal Kit (\# 130-090-101) for the depletion of dead cells.
- (Optional) Pre-Separation Filters, $30 \mu \mathrm{~m}$ (\# 130-041-407) to remove cell clumps.

2. Protocol

2.1 Sample preparation

When working with anticoagulated peripheral blood or buffy coat, peripheral blood mononuclear cells (PBMCs) should be isolated by density gradient centrifugation, for example, using Ficoll-Paque ${ }^{\mathrm{mw}}$.

- Note: To remove platelets after density gradient separation, resuspend cell pellet in buffer and centrifuge at $200 \times$ g for $10-15$ minutes at $20^{\circ} \mathrm{C}$. Carefully aspirate supernatant. Repeat washing step.

When working with lysed blood, prepare a single-cell suspension using standard methods.
For details refer to the protocols section at www.miltenyibiotec.com/ protocols.

When working with tissues, prepare a single-cell suspension using the gentleMACS ${ }^{\mathrm{mw}}$ Dissociator.
For details refer to www.gentlemacs.com/protocols.
© Dead cells may bind non-specifically to MACS MicroBeads. To remove dead cells, we recommend using density gradient centrifugation or the Dead Cell Removal Kit (\# 130-090-101).

2.2 Magnetic labeling

© Cells can be labeled with MACS MicroBeads using the autolabeling function of the autoMACS Pro Separator. For more information refer to section 2.4.

- Work fast, keep cells cold, and use pre-cooled solutions. This will prevent capping of antibodies on the cell surface and non-specific cell labeling.
- Volumes for magnetic labeling given below are for up to 10^{7} total cells. When working with fewer than 10^{7} cells, use the same volumes as indicated. When working with higher cell numbers, scale up all reagent volumes and total volumes accordingly (e.g. for 2×10^{7} total cells, use twice the volume of all indicated reagent volumes and total volumes).
© For optimal performance it is important to obtain a single-cell suspension before magnetic labeling. Pass cells through $30 \mu \mathrm{~m}$ nylon mesh (Pre-Separation Filters, $30 \mu \mathrm{~m}$, \# 130-041-407) to remove cell clumps which may clog the column. Moisten filter with buffer before use.
© The recommended incubation temperature is $2-8{ }^{\circ} \mathrm{C}$. Higher temperatures and/or longer incubation times may lead to non-specific cell labeling. Working on ice may require increased incubation times.

1. Determine cell number.
2. Centrifuge cell suspension at $300 \times \mathrm{g}$ for 10 minutes. Aspirate supernatant completely.
3. Resuspend cell pellet in $90 \mu \mathrm{~L}$ of buffer per 10^{7} total cells.
4. Add $10 \mu \mathrm{~L}$ of CD90.2 MicroBeads per 10^{7} total cells.
5. Mix well and incubate for 15 minutes in the dark in the refrigerator $\left(2-8^{\circ} \mathrm{C}\right)$.
6. (Optional) Add staining antibodies, e.g., 10μ L of CD90.2-FITC (\# 130-102-452), and incubate for 5 minutes in the dark in the refrigerator $\left(2-8{ }^{\circ} \mathrm{C}\right)$.
7. Wash cells by adding $1-2 \mathrm{~mL}$ of buffer per 10^{7} cells and centrifuge at $300 \times \mathrm{g}$ for 10 minutes. Aspirate supernatant completely.
8. Resuspend up to 10^{8} cells in $500 \mu \mathrm{~L}$ of buffer. - Note: For higher cell numbers, scale up buffer volume accordingly. © Note: For depletion with LD Columns, resuspend up to 1.25×10^{8} cells in $500 \mu \mathrm{~L}$ of buffer.
9. Proceed to magnetic separation (2.3).

2.3 Magnetic separation

\triangle Choose an appropriate MACS Column and MACS Separator according to the number of total cells and the number of CD90.2 ${ }^{+}$ cells. For details refer to the table in section 1.4.
A Always wait until the column reservoir is empty before proceeding to the next step.

Magnetic separation with MS or LS Columns

1. Place column in the magnetic field of a suitable MACS Separator. For details refer to the respective MACS Column data sheet.
2. Prepare column by rinsing with the appropriate amount of buffer:

$$
\text { MS: } 500 \mu \mathrm{~L} \quad \text { LS: } 3 \mathrm{~mL}
$$

3. Apply cell suspension onto the column. Collect flow-through containing unlabeled cells.
4. Wash column with the appropriate amount of buffer. Collect unlabeled cells that pass through and combine with the flow-through from step 3.

$$
\text { MS: } 3 \times 500 \mu \mathrm{~L} \quad \text { LS: } 3 \times 3 \mathrm{~mL}
$$

A Note: Perform washing steps by adding buffer aliquots as soon as the column reservoir is empty.
5. Remove column from the separator and place it on a suitable collection tube.
6. Pipette the appropriate amount of buffer onto the column Immediately flush out the magnetically labeled cells by firmly pushing the plunger into the column.

$$
\text { MS: } 1 \mathrm{~mL} \quad \text { LS: } 5 \mathrm{~mL}
$$

7. (Optional) To increase the purity of CD90.2 ${ }^{+}$cells, the eluted fraction can be enriched over a second MS or LS Column. Repeat the magnetic separation procedure as described in steps 1 to 6 by using a new column.

Magnetic separation with XS Columns

For instructions on the column assembly and the separation refer to the XS Column data sheet.

Depletion with LD Columns

1. Place LD Column in the magnetic field of a suitable MACS Separator. For details refer to the LD Column data sheet.
2. Prepare column by rinsing with 2 mL of buffer.
3. Apply cell suspension onto the column.
4. Collect unlabeled cells that pass through and wash column with $2 \times 1 \mathrm{~mL}$ of buffer. Collect total flow-through; this is the unlabeled cell fraction. Perform washing steps by adding buffer two times. Only add new buffer when the column reservoir is empty.

Depletion with CS Columns

1. Assemble CS Column and place it in the magnetic field of a suitable MACS Separator. For details refer to the CS Column data sheet.
2. Prepare column by filling and rinsing with 60 mL of buffer. Attach a 22 G flow resistor to the 3-way stopcock of the assembled column. For details refer to the CS Column data sheet.
3. Apply cell suspension onto the column.
4. Collect unlabeled cells that pass through and wash column with 30 mL buffer from the top. Collect total flow-through; this is the unlabeled cell fraction.

Depletion with D Columns

For instructions on the column assembly and separation refer to the D Column data sheet.

2.4 Cell separation with the autoMACS ${ }^{\text {® }}$ Pro Separator

- Refer to the user manual for instructions on how to use the autoMACS ${ }^{\circ}$ Pro Separator.
\triangle Buffers used for operating the autoMACS Pro Separator should have a temperature of $\geq 10^{\circ} \mathrm{C}$.
- For appropriate resuspension volumes and cell concentrations, please visit www.automacspro.com/autolabeling.

2.4.1 Cell separation with the autoMACS ${ }^{\circ}$ Pro Separator using autolabeling for a fully automated procedure

1. Turn on the instrument for automatic initialization (automated preparation and priming procedure).
2. Program autolabeling by selecting Read Reagent in the Reagent menu tab and scan the 2D barcode on each reagent vial with the barcode scanner on the autoMACS Pro instrument. Place the reagent into the appropriate space on the reagent rack.
3. Place sample and collection tubes into the sample rack. Sample tube should be in row A, and the collection tubes in rows B and C .
4. Select the reagent name for each sample from the Labeling submenu (the correct labeling, separation, and wash protocols will be selected automatically).
5. Enter sample volume into the Volume submenu.
6. Select run.

For more details on complete walk away automation on the autoMACS Pro Separator, please refer to the autoMACS Pro Separator user manual.

2.4.2 Magnetic separation with the autoMACS ${ }^{\circledR}$ Pro Separator using manual labeling

1. Label the sample as described in section 2.2 Magnetic labeling
2. Prepare and prime the instrument.
3. Apply tube containing the sample and provide tubes for collecting the labeled and unlabeled cell fractions. Place sample tube in row A of the tube rack and the fraction collection tubes in rows B and C.
4. For a standard separation choose the following program:

Positive selection: Possel

Collect positive fraction from row C of the tube rack.
Depletion: Depletes
Collect negative fraction in row B of the tube rack.

3. Example of a separation using CD90.2 MicroBeads

CD90.2 ${ }^{+}$were isolated from a mouse spleen suspension using the CD90.2 MicroBeads, an MS Column, and a MiniMACS ${ }^{\text {m" }}$ Separator. Cells are fluorescently stained with CD90.2-FITC. Cell debris and dead cells were excluded from the analysis based on scatter signals and propidium iodide fluorescence.

4. References

1. Huaux, F. et al. (2003) Dual role of Il-4 in lung injury and fibrosis. J. Immunol 170: 2083-2092.
2. Roggia, C. et al. (2001) Up-regulation of TNF-producing T cells in the bone marrow: A key mechanism by which estrogen deficiency induces bone loss in vivo. Proc. Nat. Acad. Sci. U.S.A. 98: 13960-13965.
3. Prévost-Blondel, A. et al. (1998) Tumor-infiltrating lymphocytes exhibiting high ex vivo cytolytic activity fail to prevent murine melanoma tumor growth in vivo. J. Immunol. 161: 2187-2194.
4. Radoja, S. et al. (2000) Mice bearing late-stage tumors have normal functional systemic T cell response in vitro and in vivo. J. Immunol. 164: 2619-2623.

Refer to www.miltenyibiotec.com for all data sheets and protocols.

Warranty

The products sold hereunder are warranted only tobe free from defects in workmanship and material at the time of delivery to the customer. Miltenyi Biotec GmbH makes no warranty or representation, either expressed or implied, with respect to the fitness of a product for a particular purpose. There are no warranties, expressed or implied, which extend beyond the technical specifications of the products. Miltenyi Biotec GmbH's liability is limited to either replacement of the products or refund of the purchase price. Miltenyi Biotec GmbH is not liable for any property damage, personal injury or economic loss caused by the product.
autoMACS, gentleMACS, MACS, MACSQuant, MidiMACS, MiniMACS, MultiMACS, OctoMACS, QuadroMACS, SuperMACS, and VarioMACS are either registered trademarks or trademarks of Miltenyi Biotec GmbH.

Ficoll-Paque is a trademark of GE Healthcare companies.
Copyright © 2015 Miltenyi Biotec GmbH . All rights reserved.

