GeneBLAzer ${ }^{\circledR}$ TR beta HEK 293T DA and TR beta-UAS-bla HEK 293T Cell-based Assay

Catalog nos. K1389 and K1686
Shipping: Dry Ice
Storage: $-80^{\circ} \mathrm{C} /$
Liquid Nitrogen
Protocol part no. K1248.pps
Rev. date: 6 November 2010
Table of Contents Page

1. Description 1
2. Overview of GeneBLAzer ${ }^{\circledR}$ Beta-Lactamase Reporter Technology 2
3. Materials Supplied 2
4. Materials Required 3
5. Detailed Cell Handling Procedures 4
5.1 DA Cells Thawing Method 4 4
5.2 Non-DA Cells 4
6. Media Requirements 5
7. Assay Procedure 6
7.1 Quick Assay Reference Guides 6
7.2 Detailed Assay Protocol7
7.3 Substrate Preparation, Loading and Incubation 8
7.4 Detection9
8. Data Analysis 10
8.1 Background Subtraction and Ratio Calculation 10
8.2 Visual Observation of Intracellular Beta-lactamase Activity Using LiveBLAzer ${ }^{\text {TM }}$-FRET B/G Substrate (CCF4-AM). 10
9. References 11
10. Purchaser Notification 12

1. Description

GeneBLAzer ${ }^{\circledast}$ TR beta HEK 293T DA (Division-arrested) cells and TR beta-UAS-bla HEK 293T cells contain a human thyroid hormone receptor beta ligand-binding domain/Gal4 DNA binding domain chimera stably integrated into the CellSensor ${ }^{\circledR}$ UAS-bla HEK 293T cell line. CellSensor ${ }^{\circledR}$ UAS-bla HEK 293T contains a beta-lactamase reporter gene under control of a UAS response element stably integrated into HEK 293T cells. TR beta HEK 293T DA cells and TR beta-UAS-bla HEK 293 T cells have been functionally validated for Z^{\prime}-Factor and EC_{50} concentrations of T3 thyroid hormone.

Dose response of TR beta HEK 293T DA cells and TR beta-UAS-bla HEK 293T cells to T3.

For Technical Support for this or other Invitrogen Drug Discovery Products, dial 760-603-7200 extension 40266

2. Overview of GeneBLAzer ${ }^{\circledR}$ Beta-Lactamase Reporter Technology

GeneBLAzer ${ }^{\oplus}$ Beta-lactamase Reporter Technology provides a highly accurate, sensitive, and easy-to-use method of monitoring cellular response to drug candidates or other stimuli (1). The core of the GeneBLAzer ${ }^{\ominus}$ Technology is a Fluorescence Resonance Energy Transfer (FRET) substrate that generates a ratiometric reporter response with minimal experimental noise. In addition to the dual-color (blue/green) readout of stimulated and unstimulated cells, this ratiometric method reduces the absolute and relative errors that can mask the underlying biological response of interest. Such errors include variations in cell number, transfection efficiency, substrate concentration, excitation path length, fluorescence detectors, and volume changes. The GeneBLAzer ${ }^{\circledR}$ Beta-lactamase Reporter Technology has been proven in high-throughput screening (HTS) campaigns for a range of target classes, including G-protein coupled receptors (GPCRs) $(2,3)$, nuclear receptors (4-6) and kinase signaling pathways (7).

3. Materials Supplied

Product:	Name	Size	Catalog \#
	GeneBLAzer ${ }^{\circledR}$ TR beta HEK 293T DA Assay Kit Each system contains sufficient division-arrested cells and substrate to assay one 384 -well plate. Includes: - TR beta HEK 293T DA cells (K1389A) - LiveBLAzer ${ }^{\text {TM }}$-FRET B/G Loading Kit, $70 \mu \mathrm{~g}$ - Protocol - Certificate of Analysis	1 plate	K1389
	GeneBLAzer ${ }^{\circledR}$ TR beta-UAS-bla HEK 293T cells Includes: - TR beta-UAS-bla HEK 293T cells (K1248) - Protocol - Certificate of Analysis	1 tube	K1686
Shipping Condition:	Dry ice		
Storage Condition of Cells:	Short Term: $-80^{\circ} \mathrm{C}$ Long Term: $-80^{\circ} \mathrm{C}$ for at least 1 day followed by Liquid Nitrogen		
Growth Properties of Non-Division-arrested Cells:	Adherent		
Cell Phenotype:	Epithelial		
Selection Marker(s) for Non-Division arrested cells:	Zeocin ${ }^{\text {TM }}$ ($100 \mu \mathrm{~g} / \mathrm{mL}$), Hygromycin ($80 \mu \mathrm{~g} / \mathrm{mL}$) Note: HEK 293T cells contain the large T antigen and are thus Geneticin ${ }^{\circledR}$ resistant. These cells are also Blasticidin resistant.		
Mycoplasma Testing:	Negative		
BioSafety Level:	2		

4. Materials Required

Use the table below to determine the additional media and reagents required for use with each kit:

Media/Reagents	Recommended Source	Part \#	Required Separately?	
			TR beta HEK 293T DA Assay Kit (K1389)	TR beta-UASbla HEK 293T cells (K1686)
LiveBLAzer ${ }^{\text {rTM }}$-FRET B/G Loading Kit: LiveBLAzer ${ }^{\text {TTM }}$-FRET B/G Substrate (CCF4AM) DMSO for Solution A Solution B Solution C	Invitrogen	$\begin{aligned} & \text { K1427 }(70 \mu \mathrm{~g}) \\ & \text { K1095 }(200 \mu \mathrm{~g}) \\ & \text { K1096 }(1 \mathrm{mg}) \\ & \text { K1030 }(5 \mathrm{mg}) \end{aligned}$	No (included in kit)	Yes
Recovery ${ }^{\text {TM }}$ Cell Culture Freezing Medium	Invitrogen	12648-010	No	Yes
DMEM (high-glucose), with GlutaMAX ${ }^{\text {TM }}$	Invitrogen	10569-010	No	Yes
DMSO	Fluka	41647	Yes	Yes
Phenol red-free DMEM	Invitrogen	21063-029	Yes	Yes
Fetal bovine serum (FBS), charcoal-stripped	Invitrogen	12676-011	Yes	Yes
Fetal bovine serum (FBS), dialyzed, tissueculture grade (DO NOT SUBSTITUTE!)	Invitrogen	26400-036	No	Yes
Non-essential amino acids (NEAA)	Invitrogen	11140-050	Yes	Yes
Sodium Pyruvate	Invitrogen	11360-070	Yes	Yes
Penicillin/Streptomycin (antibiotics)	Invitrogen	15140-122	Yes	Yes
Phosphate-buffered saline without calcium and magnesium [PBS(-)]	Invitrogen	14190-136	No	Yes
HEPES (1 M, pH 7.3)	Invitrogen	15630-080	No	Yes
T3- thyroid hormone 3,5,3'-triiodothyronine	Calbiochem	642511	Yes	Yes
Thyroid hormone receptor antagonist 1-850	Calbiochem	609315	Yes	Yes
0.05\% Trypsin/EDTA	Invitrogen	25300-054	No	Yes
Hygromycin (antibiotic)	Invitrogen	10687-010	No	Yes
Zeocin ${ }^{\text {TM }}$ (antibiotic)	Invitrogen	R250-01	No	Yes

The following tables list materials required for use with all kits:

Consumables	Recommended Source	Part \#
Black-wall, clear-bottom, 384-well assay plates (with low fluorescence background)	Corning	3712
Compressed air	Various	---

Equipment	Recommended Source
Fluorescence plate reader with bottom-read capabilities	Various
Filters if required for plate reader (see Section 7.4.1)	Chroma Technologies
Optional: Epifluorescence- or fluorescence-equipped microscope, with appropriate filters	Various
Optional: Microplate centrifuge	Various

5. Detailed Cell Handling Procedures

Note: Division-arrested (DA) cells have different thawing procedures than non-DA cells. Refer to the instructions below for your particular application.
Note: Refer to Section 6, Media Requirements for specific media recipes.

5.1 DA Cells Thawing Method

Note: Once cells are thawed per the instructions below, cells must be counted and the density adjusted to the appropriate level as specified in Section 7.0, Assay Procedure, prior to analysis.

1. Rapidly thaw the vial of cells by placing at $37^{\circ} \mathrm{C}$ in a water bath with gentle agitation for $1-2$ minutes. Do not submerge vial in water.
2. Decontaminate the vial by wiping with 70% ethanol before opening in a Class II biological safety cabinet.
3. Transfer the vial contents drop-wise into 10 mL of Assay Medium in a sterile $15-\mathrm{mL}$ conical tube.
4. Centrifuge cells at $200 \times g$ for 5 minutes.
5. Aspirate supernatant and resuspend the cell pellet in 1 mL fresh Assay Medium.
6. Count the cells.
7. Proceed to Section 7, Assay Procedure. Adjust the cell density with Assay Medium to the appropriate cell density as specified in Section 7.

5.2 Non-DA Cells

5.2.1 Thawing Method

Note: Cells are shipped to you on dry ice and as such may require a short period of time prior to full recovery and normal growth.

1. Place 9 mL of Thawing Medium into a T25 flask. Place the flask in a humidified $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ incubator for 15 minutes to allow medium to equilibrate to the proper pH and temperature.
2. Remove the vial of cells to be thawed from liquid nitrogen and rapidly thaw by placing at $37^{\circ} \mathrm{C}$ in a water bath with gentle agitation for 1-2 minutes. Do not submerge vial in water.
3. Decontaminate the vial by wiping with 70% ethanol before opening in a Class II biological safety cabinet.
4. Transfer the vial contents drop-wise into 10 mL of Thawing Medium in a sterile $15-\mathrm{mL}$ conical tube.
5. Centrifuge cells at $200 \times g$ for 5 minutes.
6. Aspirate supernatant and resuspend the cell pellet in 1 mL of fresh Thawing Medium.
7. Count Cells.
8. Transfer $\sim 1 \times 10^{6}$ cells to the T25 tissue culture flask ($\sim 40,000$ cells $/ \mathrm{cm}^{2}$) containing pre-equilibrated Thawing Medium and place flask in the humidified $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ incubator.
9. At first passage, switch to Growth Medium.

5.2.2 Propagation Method

1. Passage or feed cells at least twice a week. Maintain cells between 5% and 95% confluence. Do not allow cells to reach confluence.
2. To passage cells, aspirate medium, rinse once in PBS, add Trypsin/EDTA (1 mL for a T25 flask, 3 mL for a T75 flask, 5 mL for a T175 flask, and 7 mL for T225 flask) and swirl to coat the cells evenly. Cells usually detach after $\sim 2-5$ minutes exposure to Trypsin/EDTA. Add an equal volume of Growth Medium to inactivate Trypsin.
3. Verify under a microscope that cells have detached and clumps have completely dispersed.
4. Centrifuge cells at $200 \times \mathrm{g}$ for 5 minutes and resuspend in Growth Medium.

5.2.3 Freezing Method

1. Harvest the cells as described in Subsection 5.2.2 (above), Step 2. After detachment, count the cells, centrifuge cells at $200 \times g$ for 5 minutes, and resuspend in $4^{\circ} \mathrm{C}$ Freeze Medium to a density of 2×10^{6} cells $/ \mathrm{mL}$.
2. Dispense $1.0-\mathrm{mL}$ aliquots into cryogenic vials.
3. Place in an insulated container for slow cooling and store overnight at $-80^{\circ} \mathrm{C}$.
4. Transfer to liquid nitrogen the next day for storage.

For Technical Support for this or other Invitrogen Drug Discovery Products, dial 760-603-7200 extension 40266

6. Media Requirements

Note: Unless otherwise stated, have all media and solutions at least at room temperature (we recommend $37^{\circ} \mathrm{C}$ for optimal performance) before adding to cells.

Note: Make NO MEDIA SUBSTITUTIONS, as these cell lines have been specifically validated for optimal assay performance with these media. For non-DA cells, we recommend that you create and store an aliquot for back up.

Note: All media components can be added directly to the 500 mL bottle of base media (DMEM).

Component	Assay Medium (DA and Non-DA cells)	Growth Medium (Non-DA cells only)	Thawing Medium (Non-DA cells only)	Freeze Medium (Non-DA cells only)
DMEM with GlutaMAX ${ }^{\text {TM }}$	--	90\% (500 mL)	90\% (500 mL)	-
Phenol red-free DMEM	98\% (500 mL)	-	-	-
Dialyzed FBS (Do not substitute!)	-	10\% (50 mL)	10\% (50 mL)	-
Charcoal-stripped FBS	2\% (10 mL)	-	-	-
NEAA	$0.1 \mathrm{mM}(5 \mathrm{~mL})$	$0.1 \mathrm{mM}(5 \mathrm{~mL})$	$0.1 \mathrm{mM}(5 \mathrm{~mL})$	-
HEPES (pH 7.3)	-	$25 \mathrm{mM}(12.5 \mathrm{~mL})$	$25 \mathrm{mM}(12.5 \mathrm{~mL})$	-
Sodium Pyruvate	$1 \mathrm{mM}(5 \mathrm{~mL})$	-	-	-
Penicillin/Streptomycin (antibiotics)	$100 \mathrm{U} / \mathrm{mL}$ and $100 \mu \mathrm{~g} / \mathrm{mL}$ (5 mL)	$100 \mathrm{U} / \mathrm{mL}$ and $100 \mu \mathrm{~g} / \mathrm{mL}$ (5 mL)	$100 \mathrm{U} / \mathrm{mL}$ and $100 \mu \mathrm{~g} / \mathrm{mL}$ (5 mL)	-
Hygromycin (antibiotic)	-	$80 \mathrm{\mu g} / \mathrm{mL}$	-	-
Zeocin ${ }^{\text {™ }}$ (antibiotic)	-	$100 \mu \mathrm{~g} / \mathrm{mL}$	-	-
Recovery ${ }^{\text {TM }}$ Cell Culture Freezing Medium	-	-	-	100\%

7. Assay Procedure

The following instructions outline the recommended procedure for determining activity of compounds as modulators of TR beta using LiveBLAzer ${ }^{\text {TM }}$-FRET B/G Substrate as the readout. If alternative substrates are used (e.g., ToxBLAzer ${ }^{\text {TM }}$ DualScreen or LyticBLAzer ${ }^{\text {TM }}$ Loading kits), follow the loading protocol provided with the product.

7.1 Quick Assay Reference Guides

For a more detailed assay protocol, see Section 7.2.

Agonist Assay Quick Reference Guide

	Unstimulated Wells	Stimulated Wells	Cell-free Wells	Test Compound Wells
Step 1 Plate cells, incubate	$32 \mu \mathrm{~L}$ cells in Assay Medium (10,000 cells/well)	$32 \mu \mathrm{~L}$ cells in Assay Medium (10,000 cells/well)	$32 \mu \mathrm{~L}$ Assay Medium (no cells)	$32 \mu \mathrm{~L}$ cells in Assay Medium (10,000 cells/well)
Step 2 Add Agonist or Test Compounds	$8 \mu \mathrm{~L}$ Assay Medium with 0.5% DMSO	$8 \mu \mathrm{~L}$ 5 T3 in Assay Medium with 0.5% DMSO	$8 \mu \mathrm{~L}$ Assay Medium with 0.5% DMSO	$8 \mu \mathrm{~L}$ 5 Test Compounds in 0.5% DMSO
Step 3 Incubate cells	Incubate in a humidified $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ incubator for 16 hours			
Step 4 Prepare 6X Substrate Mix	$6 \mu \mathrm{~L}$ of 1 mM LiveBLAzer ${ }^{\mathrm{TM}}$-FRET B/G (CCF4-AM) Substrate $+60 \mu \mathrm{~L}$ of solution B, mix. Add $934 \mu \mathrm{~L}$ of Solution C, mix.			
Step 5 Add Substrate Mixture	$8 \mu \mathrm{~L}$ per well			
Step 6 Incubate Substrate Mix. + cells	2 hours at room temperature in the dark			
Step 7 Detect activity	See Section 7.4			
Step 8 Analyze data	See Section 8			

Antagonist Assay Quick Reference Guide

	Unstimulated Wells	Stimulated Wells	Antagonist Control Wells	Cell-free Wells	Test Compound Wells
Step 1 Plate cells, incubate	$32 \mu \mathrm{~L}$ cells in Assay Medium (10,000 cells/well)	$32 \mu \mathrm{~L}$ cells in Assay Medium (10,000 cells/well)	$32 \mu \mathrm{~L}$ cells in Assay Medium (10,000 cells/well)	$32 \mu \mathrm{~L}$ Assay Medium (no cells)	$32 \mu \mathrm{~L}$ cells in Assay Medium (10,000 cells/well)
Step 2 Add Antagonist or Test Compounds	$4 \mu \mathrm{~L}$ Assay Medium with 0.5% DMSO	$4 \mu \mathrm{~L}$ Assay Medium with 0.5% DMSO	$4 \mu \mathrm{~L}$ 10X thyroid hormone receptor antagonist 1-850 in Assay Medium with 0.5% DMSO	$4 \mu \mathrm{~L}$ Assay Medium with 0.5% DMSO	$4 \mu \mathrm{~L}$ 10X Test Compounds in Assay Medium with 0.5\% DMSO
Optional Step:	Incubate plate with Antagonist for 30 minutes before proceeding				
Step 3 Add Agonist	$4 \mu \mathrm{~L}$ Assay Medium with 0.5% DMSO	$4 \mu \mathrm{~L}$ 10X T3 in Assay Medium with 0.5\% DMSO	$4 \mu \mathrm{~L}$ 10X T3 in Assay Medium with 0.5% DMSO	$4 \mu \mathrm{~L}$ Assay Medium with 0.5% DMSO	$4 \mu \mathrm{~L}$ 10X T3 in Assay Medium with 0.5\% DMSO
Step 4 Incubate cells	Incubate in a humidified $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ incubator for 16 hours				
Step 5 Prepare 6X Substrate Mix	Add $6 \mu \mathrm{~L}$ of 1 mM LiveBLAzer ${ }^{\text {rM }}$-FRET B/G (CCF4-AM) substrate $+60 \mu \mathrm{~L}$ of solution B, mix. Add $934 \mu \mathrm{~L}$ of Solution C, mix.				
Step 6 Add Substrate Mixture	$8 \mu \mathrm{~L}$ per well				
Step 7 Incubate Mixture	2 hours at room temperature in the dark				
Step 8 Detect activity	See Section 7.4				
Step 9 Analyze data	See Section 8				

7.2 Detailed Assay Protocol

Plate layouts and experimental outlines will vary; in screening mode, we recommend using at least three wells for each control: Unstimulated Control, Stimulated Control, and Cell-free Control.

Note: Some solvents may affect assay performance. Assess the effects of solvent before screening. The cell stimulation procedure described below is carried out in the presence of $0.1 \% \mathrm{DMSO}$ to simulate the effect that a Test Compound's solvent might have on the assay. If you use other solvents and/or solvent concentrations, optimize the following assay conditions appropriately.

7.2.1 Precautions

- Work on a dust-free, clean surface. Always handle the 384-well, black-wall, clear-bottom assay plate by the sides; do not touch the clear bottom of the assay plate.
- If pipetting manually, you may need to centrifuge the plate briefly at room temperature (for 1 minute at $14 \times g$) after additions to ensure all assay components are on the bottom of the wells.

7.2.2 Plating Cells

DA Cells

1. Thaw DA cells into Assay Medium and count (as described in Section 5.1). Dilute cells to a density of 3.1×10^{5} cells $/ \mathrm{mL}$ in Assay Medium.
2. Add $32 \mu \mathrm{~L}$ per well of the Assay Medium to the Cell-free Control wells. Add $32 \mu \mathrm{~L}$ per well $(10,000$ cells/well) of the cell suspension to the Test Compound wells, the Unstimulated Control wells, and Stimulated Control wells. Proceed to Section 7.2.3 for an Agonist assay or Section 7.2.4 for an Antagonist assay.

Non-DA Cells

1. Harvest non-DA cells from culture at $70-90 \%$ confluency. Spin down cells and suspend cells in Assay Medium and count. Dilute cells to a density of 3.1×10^{5} cells $/ \mathrm{mL}$ in Assay Medium.
2. Add $32 \mu \mathrm{~L}$ per well of the Assay Medium to the Cell-free Control wells. Add $32 \mu \mathrm{~L}$ per well (10,000 cells/well) of the cell suspension to the Test Compound wells, the Unstimulated Control wells, and Stimulated Control wells. Proceed to Section 7.2.3 for an Agonist assay or Section 7.2.4 for an Antagonist assay.

7.2.3 Agonist Assay Plate Setup

Note: This subsection provides directions for performing an Agonist assay. See Section 7.2.4 for directions for performing an Antagonist assay.

1. Prepare a stock solution of 0.5% DMSO in Assay Medium.
2. Prepare a 5 X stock of Test Compounds in Assay Medium with 0.5% DMSO (or if test compound is dissolved in DMSO, make sure the DMSO concentration for the 5 X solution is 0.5%)
3. Prepare a 5 X stock of T3 in Assay Medium with 0.5% DMSO. We recommend running a dose response curve to determine the optimal concentration for the T3 solution.
4. Add $8 \mu \mathrm{~L}$ of the stock solution of 0.5% DMSO in Assay Medium to the Unstimulated Control and Cellfree Control wells.
5. Add $8 \mu \mathrm{~L}$ of the 5 X stock solution of T 3 to the Stimulated Control wells.
6. Add $8 \mu \mathrm{~L}$ of the 5 X stock of Test Compounds to the Test Compound wells.
7. Incubate the Agonist assay plate in a humidified $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ incubator for ~ 16 hours. Then proceed to Section 7.3 for Substrate Loading and Incubation.

7.2.4 Antagonist Assay Plate Setup

Note: This subsection provides directions for performing an Antagonist assay. See Section 7.2.3 for directions for performing an Agonist assay.

1. Prepare a stock solution of 0.5% DMSO in Assay Medium.
2. Prepare a 10X stock of Test Compounds in Assay Medium with 0.5% DMSO (or if test compound is dissolved in DMSO, make sure the DMSO concentration for the 5 X solution is 0.5%).
3. Prepare a 10X stock of T3 in Assay Medium with 0.5% DMSO. We recommend running a dose response curve to determine the optimal agonist concentration. For antagonist assays, we recommend stimulating cells with an agonist concentration in the $\mathrm{EC}_{50}-\mathrm{EC}_{80}$ range.
4. Prepare a 10X stock of antagonist 1-850 in Assay Medium with 0.5% DMSO. We recommend running a dose response curve to determine the optimal inhibition concentration for the Antagonist solution.
5. Add $4 \mu \mathrm{~L}$ of the 10X stock of Test Compounds to the Test Compound wells.
6. Add $4 \mu \mathrm{~L}$ of the stock solution of 0.5% DMSO in Assay Medium to the Stimulated Control wells, the Unstimulated Control wells, and the Cell-free Control wells.
7. Add $4 \mu \mathrm{~L}$ of the 10 X stock of antagonist in Assay Medium with 0.5% DMSO to the Antagonist Control wells.
8. If desired, incubate the Test Compounds with the cells in a humidified $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ incubator before proceeding. Typically, a 30-minute incubation is sufficient.
9. Add $4 \mu \mathrm{~L}$ of the 10X stock solution of T3 to the Test Compound wells, the Stimulated Control wells, and the Antagonist Control wells.
10. Add $4 \mu \mathrm{~L}$ of Assay Medium with 0.5% DMSO to the Unstimulated Control and Cell-free Control wells.
11. Incubate the Antagonist assay plate in a humidified $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ incubator for ~ 16 hours. Then proceed to Section 7.3 for Substrate Loading and Incubation.

7.3 Substrate Preparation, Loading and Incubation

This protocol is designed for loading cells with LiveBLAzer ${ }^{\text {rM }}$-FRET B/G Substrate Mixture (CCF4-AM) Substrate Mixture. If you use alternative substrates, follow the loading protocol provided with the substrate.
Prepare LiveBLAzer ${ }^{\text {rim }}$-FRET B/G Substrate Mixture (CCF4-AM) Substrate Mixture and load cells in the absence of direct strong lighting. Turn off the light in the hood.

1. Prepare Solution A: 1 mM LiveBLAzer ${ }^{\text {TM }}$-FRET B/G Substrate (CCF4-AM) Substrate Mixture in dry DMSO by adding $912 \mu \mathrm{~L}$ of DMSO per mg of dry substrate. Store the aliquots of the stock solution at $-20^{\circ} \mathrm{C}$ until use. The molecular weight of the LiveBLAzer ${ }^{\text {TM }}$-FRET B/G Substrate (CCF4-AM) is $1096 \mathrm{~g} / \mathrm{mol}$.
2. Prepare 6X Loading Solution:

For Technical Support for this or other Invitrogen Drug Discovery Products, dial 760-603-7200 extension 40266
a. Add $6 \mu \mathrm{~L}$ of Solution A to $60 \mu \mathrm{~L}$ of Solution B and vortex.
b. Add $934 \mu \mathrm{~L}$ of Solution C to the above solution and vortex.

Note: If more than 1 mL 6 X Substrate Mixture is needed, scale up the amount of each solution proportionally
3. Remove assay plate from the humidified $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ incubator.

Note: Handle the plate gently and do not touch the bottom.
4. Add $8 \mu \mathrm{~L}$ of the 6 X Substrate Mixture to each well.
5. Cover the plate to protect it from light and evaporation.
6. Incubate at room temperature for 2 hours.

7.4 Detection

Make measurements at room temperature from the bottom of the wells, preferably in 384-well, black-wall, clearbottom assay plates with low fluorescence background. Before reading the plate, remove dust from the bottom with compressed air.

7.4.1 Instrumentation, Filters, and Plates

- Fluorescence plate reader with bottom reading capabilities.
- Recommended filters for fluorescence plate reader:

Excitation filter: $\quad 409 / 20 \mathrm{~nm}$
Emission filter: $\quad 460 / 40 \mathrm{~nm}$
Emission filter: $\quad 530 / 30 \mathrm{~nm}$

7.4.2 Reading an Assay Plate

1. Set the fluorescence plate reader to bottom-read mode with optimal gain and 5 reads.
2. Allow the lamp in the fluorescence plate reader to warm up for at least 10 minutes before making measurements.
3. Use the following filter selections:

	Scan 1	Scan 2
Purpose:	Measure fluorescence in the Blue channel	Measure FRET signal in the Green channel
Excitation filter:	$409 / 20 \mathrm{~nm}$	$409 / 20 \mathrm{~nm}$
Emission filter:	$460 / 40 \mathrm{~nm}$	$530 / 30 \mathrm{~nm}$

8. Data Analysis

8.1 Background Subtraction and Ratio Calculation

We recommend that you subtract the background for both emission channels (460 nm and 530 nm).

1. Use the assay plate layout to identify the location of the Cell-free Control wells. These Control wells are used for background subtraction.
2. Determine the average emission from the Cell-free Control wells at both 460 nm (Average Blue Background) and 530 nm (Average Green Background).
3. Subtract the Average Blue background from all of the Blue emission data.
4. Subtract the Average Green background from all of the Green emission data.
5. Calculate the Blue/Green Emission Ratio for each well, by dividing the background-subtracted Blue emission values by the background-subtracted Green emission values.

Note: You may also calculate response ratio to know your assay window. The response ratio is calculated as the Blue/Green Emission Ratio of the T3-Stimulated wells divided by the Blue/Green Emission Ratio of the unstimulated wells. Generally, a response ratio of >3 has been shown to yield a $Z^{\prime} \geq 0.6$.

8.2 Visual Observation of Intracellular Beta-lactamase Activity Using LiveBLAzer" ${ }^{\text {w"-FRET B/G }}$ Substrate (CCF4-AM)

Note: Microscopic visualization of cells will cause photobleaching. Always read the assay plate in the fluorescence plate reader before performing microscopic visualization.
An inverted microscope equipped for epifluorescence and with either a xenon or mercury excitation lamp may be used to view the LiveBLAzer ${ }^{\text {rN }}$-FRET B/G Substrate (CCF4-AM) signal in cells. To visually inspect the cells, you will need a long-pass filter passing blue and green fluorescence light, so that your eye can visually identify whether the cells are fluorescing green or blue.
Recommended filter sets for observing beta-lactamase activity are described below and are available from Chroma Technologies (800-824-7662, www.chroma.com).

Chroma Set \# 41031
Excitation filter: $\quad \mathrm{HQ405/20x}(405 \pm 10)$
Dichroic mirror: $\quad 425$ DCXR
Emission filter: HQ435LP (435 long-pass)
Filter sizes vary for specific microscopes and need to be specified when the filters are ordered. For epifluorescence microscopes, a long-pass dichroic mirror is needed to separate excitation and emission light and should be matched to the excitation filter (to maximally block the excitation light around 405 nm , yet allow good transmission of the emitted light).

9. References

1. Zlokarnik, G., et al, Quantitation of Transcription and Clonal Selection of Single Living Cells with Beta-Lactamase as Reporter, (1998) Science; 279: p84-88.
2. Kunapuli P, Ransom R, Murphy K, Pettibone D, Kerby J, Grimwood S, Zuck P, Hodder P, Lacson R, Hoffman I, Inglese J, Strulovici B, Development of an Intact Cell Reporter Gene Beta-lactamase Assay for G Protein-coupled Receptors, (2003) Analytical Biochem.; 314: p16-29.
3. Xing, H., Pollok, B., et al, A Fluorescent Reporter Assay For The Detection of Ligands Acting Through G1 Proteincoupled Receptors, (2000) J. Receptor \& Signal Transduction Research; 20: p189-210.
4. Qureshi, S., et al, A One-Arm Homologous Recombination Approach for Developing Nuclear Receptor Assays in Somatic Cells, (2003) Assay and Drug Dev. Tech; 1: p755-766.
5. Peekhaus, N. et al, A Beta-Lactamase-Dependent Gal4-Estrogen Receptor Transactivation Assay for the Ultra-High Throughput Screening of Estrogen Receptor Agonists in a 3,456-Well Format, (2003) Assay and Drug Dev Tech, 1: p789-800.
6. Chin, J., et al, Miniaturization of Cell-Based, Beta-Lactamase-Dependent FRET Assays to Ultra-High Throughput Formats to Identify Agonists of Human Liver X Receptors, (2003) Assay and Drug Dev. Tech.; 1: p777-787.
7. Whitney M, Rockenstein E, Cantin G, Knapp T, Zlokarnik G, Sanders P, Durick K, Craig FF, Negulescu PA., A Genome-wide Functional Assay of Signal Transduction in Living Mammalian Cells, (1998) Nat. Biotechnol.;16: p1329-1333.
8. Fursov, et al,(2005) Improving Consistency of cell-based assays by using division-arrested cells. Assay \& Drug Development Technologies, Vol 3, pp 7-15
9. Kunapuli, et al, (2005) Application of division arrest technology to cell-based HTS: comparison with frozen and fresh cells. Assay \& Drug Development Technologies, Vol 3, pp17-26.
10. Digan, et al,(2005) Evaluation of division-arrested cells for cell-based high-throughput screening and profiling. J. Biomolecular Screening. Vol. 10, pp 615-623.
11. Vasudevan, et al, (2005) Improving high-content-screening assay performance by using division-arrested cells. Assay \& Drug Development Technologies, Vol 3, p.p.515.

10. Purchaser Notification

Limited Use Label License No. 5: Invitrogen Technology

The purchase of this product conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product in research conducted by the buyer (whether the buyer is an academic or for-profit entity). The buyer cannot sell or otherwise transfer (a) this product (b) its components or (c) materials made using this product or its components to a third party or otherwise use this product or its components or materials made using this product or its components for Commercial Purposes. The buyer may transfer information or materials made through the use of this product to a scientific collaborator, provided that such transfer is not for any Commercial Purpose, and that such collaborator agrees in writing (a) not to transfer such materials to any third party, and (b) to use such transferred materials and/or information solely for research and not for Commercial Purposes. Commercial Purposes means any activity by a party for consideration and may include, but is not limited to: (1) use of the product or its components in manufacturing; (2) use of the product or its components to provide a service, information, or data; (3) use of the product or its components for therapeutic, diagnostic or prophylactic purposes; or (4) resale of the product or its components, whether or not such product or its components are resold for use in research. For products that are subject to multiple limited use label licenses, the terms of the most restrictive limited use label license shall control. Life Technologies Corporation will not assert a claim against the buyer of infringement of patents owned or controlled by Life Technologies Corporation which cover this product based upon the manufacture, use or sale of a therapeutic, clinical diagnostic, vaccine or prophylactic product developed in research by the buyer in which this product or its components was employed, provided that neither this product nor any of its components was used in the manufacture of such product. If the purchaser is not willing to accept the limitations of this limited use statement, Life Technologies is willing to accept return of the product with a full refund. For information about purchasing a license to use this product or the technology embedded in it for any use other than for research use please contact Out Licensing, Life Technologies, 5791 Van Allen Way, Carlsbad, California 92008; Phone (760) 603-7200 or e-mail: outlicensing@lifetech.com.

Limited Use Label License No. 150: GeneBLAzer ${ }^{\circledR}$ Technology

This product and / or its use is the subject of one or more of U.S. Patent Nos. 5,741,657, 5,955,604, 6,291,162, and 6,472,205 and foreign equivalents licensed to Life Technologies Corporation. The right to use this product for internal research specifically excludes the right to use this product to identify, discover, and profile compounds that act as a flavor, fragrance or taste-enhancers and modify a target identified in taste, olfaction, or pheromone detection, which compound does not require FDA approval of an NDA for claims of safety and efficacy. The right to use methods claimed in the foregoing patents with this product for research purposes can only be acquired by the use of GeneBLAzer ${ }^{\circledR}$ substrates purchased from Life Technologies Corporation or its authorized distributors.

Limited Use Label License No. 315: Division Arrested Cell Products

The purchaser of this product may not remove or obtain components from cells sold under this label license or use these cells in a manner inconsistent with protocols provided by Life Technologies Corporation for use of division arrested cells. The purchaser of this product may not attempt to expand division arrested cells and may only use the purchased amount of this product.

Limited Use Label License No. 51: Blasticidin and the Blasticidin Selection Marker

Blasticidin and the blasticidin resistance gene (bsd) are the subject of U.S. Patent No. 5,527,701 sold under patent license for research purposes only. For information on purchasing a license to this product for purposes other than research, contact Licensing Department, Life Technologies Corporation, 5791 Van Allen Way, Carlsbad, California 92008. Phone (760) 603-7200. Fax (760) 602-6500.

Use of Genetically Modified Organisms (GMO)

Information for European Customers The TR beta HEK 293T DA and TR beta-UAS-bla HEK 293T cell lines are genetically modified with the plasmids pLenti5/UAS-BLA-Bsd and pLenti4/GAL4-V5 spacer TR beta-LBD. As a condition of sale, use of this product must be in accordance with all applicable local legislation and guidelines including EC Directive 90/219/EEC on the contained use of genetically modified organisms.
© 2009, 2010 Life Technologies Corporation. All rights reserved. Reproduction forbidden without permission.

