

NativePure[™] pcDNA[™] Gateway[®] Vector Kit

For expression and purification of Nand C-terminal biotinylated fusion proteins and associated complexes in mammalian cells

Catalog nos. BN3002, BN3006

Version B 28 October 2010 25-0892

User Manual

Table of Contents

	Experienced Users Procedure	iv
	Kit Contents and Storage	v
	Additional Products	vii
Introd	luction	1
	Overview	1
	Experimental Outline	7
Metho	ods	8
	Generating Entry Clones	8
	Performing the LR Recombination Reactions	
	Transient Transfection of Cells	16
	Detecting Protein Biotinylation and Complex Formation	
	Expected Results	23
	Native Protein Analysis	25
	Troubleshooting	
Apper	ndix	29
	Creating Stable Cell Lines	29
	Map and Features of pcDNA [™] 3.2/capTEV [™] -NT/V5-DEST	
	Map and Features of pcDNA [™] 3.2/capTEV [™] -CT/V5-DEST	
	Map of pcDNA [™] 3.2/capTEV [™] -NT-GW/ARPC2	35
	Technical Service	
	Purchaser Notification	
	Product Qualification	41
	References	

Experienced Users Procedure

Introduction This quick reference procedure is provided for experienced users to create expression clones. If you are performing the LR recombination reactions for the first time, we recommend that you follow the detailed protocols provided in the manual.

Step		Action		
Generate entry clones	Clone your gene of interest with and w vectors to create two entry clones for r pcDNA [™] 3.2/capTEV [™] -NT/V5-DEST a	vithout a stop cod ecombination into and pcDNA [™] 3.2/c	on into Gatewa apTEV [™] -CT/V	y® entry 5-DEST.
Perform LR recombination	1. Add the following components to 1.5 ml microcentrifuge tubes at room temperature and mix.			
reactions	Component	NT-tag	CT-tag	Positive Control
	Entry clone (without stop, 50-150 ng/rxn)		1-7 μl	
	Entry clone (with stop, 50-150 ng/rxn)	1-7 µl		
	pcDNA [™] 3.2/capTEV [™] -NT/V5- DEST (150 ng/µl)	1 µl		1 µl
	pcDNA [™] 3.2/capTEV [™] -CT/V5- DEST		1 µl	
	(150 ng/µl)			
	pENTR [™] -gus (50 ng/µl)			2 µl
	TE Buffer, pH 8.0	to 8 µl	to 8 µl	5 µl
	 Remove the LR Clonase[™] II enzym (~ 2 minutes). 	ne mix from -20°C	and thaw on ice	2
	3. Briefly vortex the LR Clonase TM II e	enzyme mix twice	(2 seconds each	time).
	4. To each sample, add 2 1 of LR Clo and down.	nase™ II enzyme n	nix. Mix well by	pipetting up
	5. Incubate reactions at 25°C for 1 ho	ur.		
	6. Add 1 l of Proteinase K solution to 37°C.	o each reaction. In	cubate for 10 m	inutes at
	7. Transform 1 1 of the LR recombination the manufacturer's instructions) and	ation reaction into nd select for expre	a suitable <i>E. col</i> ssion clones.	<i>i</i> host (follow
Perform transient transfection	Transfect your NT- and CT-capTEV ^{M} t cell line of choice (page 16).	agged expression	clones into the	mammalian
Analyze proteins	Confirm biotinylation of your protein (page 18).	and complex form	ation by Weste	rn detection

Kit Contents and Storage

Types of Kits

This manual is supplied with the kits listed below.

Product	Catalog no.
NativePure ^{M} pcDNA ^{M} Gateway [®] Vector Kit	BN3002
NativePure [™] Mammalian Affinity Purification Kit	BN3006

Kit Components The following table shows the components associated with the NativePure[™] pcDNA[™]Gateway[®] Vector and Affinity Purification Kits listed above. The NativePure[™] Kits are shipped as described below. Upon receipt, store each item as detailed below.

Box	Component	Catalog no.		Shipping	Storage
		BN3002	BN3006		
1	NativePure [™] pcDNA [™] Gateway [®] Vector Kit	✓	✓	Room temperature	-20°C
2	NativePure [™] Binding and Purification Module		~	Blue ice	+4°C
3	NativePure $^{^{\mathrm{TM}}}$ AcTEV $^{^{\mathrm{TM}}}$ Protease Module		✓	Dry ice	-20°C

Kit Contents and Storage, continued

NativePure [™] pcDNA [™] Gateway [®]	Each NativePure [™] pcDNA [™] Gat Store the vectors at -20°C.	eway [®] Vector Ki	t contains the follo	wing vectors.
Vectors	Item		Amount	
	pcDNA [™] 3.2/capTEV [™] -NT/V5	-DEST	6 μg lyophilized in TE, pH 8.0	
	pcDNA [™] 3.2/capTEV [™] -CT/V5·	-DEST	6 μg lyophilized in TE, pH 8.0	
	pcDNA [™] 3.2/capTEV [™] -NT/V5	-GW/ARPC2	10 µg lyophilized	in TE, pH 8.0
NativePure [™] Binding and Purification	The following reagents are inclu Module (supplied with cat. no. l	ided in the Nativ 3N3006 only). St	rePure [™] Binding an ore at +4°C.	d Purification
Module	Reagent	Composition		Amount
	Streptavidin Agarose	10 ml of a 50% 5 ml of packed Agarose beads phosphate, pH and 2 mM sodi	slurry containing Streptavidin in 0.1 M sodium 7.5, 0.1 M NaCl, um azide.	5 ml packed resin
	10% NP40	10% (v/v) NP4 water	0 in deionized	8 ml
	NativePure [™] 5X Lysis/Binding Buffer	0.5 M Tris-HCl 0.5 M KCl 1 mM EDTA 7.5 mM MgCl ₂	, pH 8.0	100 ml
	NativePure [™] 10X TEV Buffer	0.1 M Tris-HCl 1.5 M NaCl 5 mM EDTA	, pH 8.0	40 ml
	NativePure [™] Columns	Polypropylene	columns	10
	NativePure [™] Concentrator	Includes a conc with a membra chamber	entrator fitted ne and a filtration	10

NativePure[™] AcTEV[™] Protease Module

The following reagents are included in the NativePureTM AcTEVTM Protease Module (supplied with cat. no. BN3006 only). **Store at -20°C.**

Reagent	Composition	Amount
AcTEV [™] Protease	10 U/µl AcTEV [™] Protease in:	400 µl
	50 mM Tris-HCl, pH 7.5	
	1 mM EDTA	
	5 mM DTT	
	50% (v/v) glycerol	
	0.1% (w/v) Triton X-100	
100 mM DTT	100 mM DTT in deionized water	500 µl

Additional Products

Accessory
ProductsSome of the reagents supplied in the NativePure[™] pcDNA[™] Gateway[®] Vector Kit,
as well as other products suitable for use are available separately from
Invitrogen. For more information, go to www.invitrogen.com or contact
Technical Service (see page 36).

Product	Amount	Catalog no.
pENTR [™] /D-TOPO [®] Cloning Kit	20 reactions	K2400-20
pCR8/GW/TOPO® TA Cloning Kit	20 reactions	K2500-20
Gateway [®] LR Clonase [™] II Enzyme Mix	20 reactions	11791-020
	100 reactions	11791-100
One Shot [®] TOP10 Chemically Competent Cells	10 reactions	C4040-10
One Shot [®] TOP10 Electrocompetent Cells	10 reactions	C4040-50
One Shot [®] ccdB Survival T1 ^R Chemically Competent Cells	10 reactions	C7510-03
LB Media	500 ml	10855-021
Ampicillin	200 mg	11593-027
PureLink [™] HQ Plasmid Miniprep Kit	100 reactions	K2100-01
Lipofectamine [™] 2000	0.75 ml	11668-027
Geneticin [®] Selective Antibiotic, liquid	20 ml	10131-035
Quant-iT [™] Protein Assay Kit	1000 assays	Q33210
Streptavidin-AP Conjugate	125 µl	SA100-04
Streptavidin-HRP Conjugate	2.5 mg	43-4323
WesternBreeze [®] Chromogenic Kit, Anti-Rabbit	20 reactions	WB7105
WesternBreeze [®] Chemiluminescent Kit, Anti-Rabbit	20 reactions	WB7104
NuPAGE [®] MOPS SDS Running Buffer (20X)	500 ml	NP0001
NuPAGE® MES SDS Running Buffer (20X)	500 ml	NP0002
NuPAGE [®] LDS Sample Buffer (4X)	10 ml	NP0007
NuPAGE [®] Sample Reducing Agent (10X)	250 µl	NP0004
NuPAGE [®] Transfer Buffer (20X)	1 L	NP0006-1
HiMark [™] Pre-Stained Protein Standard	250 µl	LC5699
Tris-Glycine SDS Running Buffer (10X)	500 ml	LC2675
Tris-Glycine SDS Sample Buffer (2X)	20 ml	LC2676
Nitrocellulose (0.45 µm) Membrane/Filter Paper Sandwiches	20 sandwiches	LC2001
Invitrolon™ PVDF (0.45 μm) Membrane/Filter Paper Sandwiches	20 sandwiches	LC2005
Phosphate-Buffered Saline (PBS), 1X	500 ml	10010-023
Anti-V5 Antibody	50 µl	R960-25
Anti-V5-AP Antibody	125 µl	R961-25
Anti-V5-HRP Antibody	50 µl	R962-25

Additional Products, continued

Invitrogen. For more
cal Service (see page 36).

Item	Amount	Catalog no.
NativePure [™] Affinity Purification Kit	1 kit	BN3003
NativeMark [™] Unstained Protein Standard	$5 \times 50 \ \mu l$	LC0725
NativePAGE [™] Novex 3-12% Bis-Tris Gels, 10-well	10 gels	BN1001BOX
NativePAGE [™] Novex 3-12% Bis-Tris Gels, 15-well	10 gels	BN1003BOX
NativePAGE [™] Novex 4-16% Bis-Tris Gels, 10-well	10 gels	BN1002BOX
NativePAGE [™] Novex 4-16% Bis-Tris Gels, 15-well	10 gels	BN1004BOX
NativePAGE [™] Running Buffer (20X)	1 L	BN2001
NativePAGE [™] Cathode Buffer Additive (20X)	250 ml	BN2002
NativePAGE [™] Sample Buffer (4X)	10 ml	BN2003
NativePAGE [™] 5% G-250 Sample Buffer Additive	0.5 ml	BN2004
NativePAGE [™] Running Buffer Kit	1 kit	BN2007
NativePAGE [™] Sample Prep Kit	1 kit	BN2008
10% DDM (n-dodecyl-β-D-maltoside)	1 ml	BN2005
5% Digitonin	1 ml	BN2006
Streptavidin Agarose (sedimented bead suspension)	5 ml	S-951
$AcTEV^{TM}$ Protease	1000 units	12575-015
	10,000 units	12575-023

Pre-Cast Gels

A large variety of pre-cast gels for SDS-PAGE, native PAGE, and pre-made buffers are available from Invitrogen.

Use NuPAGE[®] and Novex[®] Tris-Glycine pre-cast gels for SDS-PAGE and Western analysis. Use NativePAGE[™] pre-cast gels for native gel electrophoresis and Western analysis.

For details, visit www.invitrogen.com or contact Technical Service (page 36).

Introduction

Overview	
Introduction	The NativePure [™] Mammalian Affinity Purification Kit and NativePure [™] pcDNA [™] Gateway [®] Vector Kit contains Gateway [®] -adapted vectors for expression and purification of N- and C-terminal biotinylated fusion proteins in mammalian cells using Gateway [®] Technology (see page 6 for details on Gateway [®] Technology).
	After transfection into your mammalian cell line of choice, the NativePure ^{T} pcDNA ^{T} Gateway [®] Vectors allow <i>in vivo</i> biotinylation and expression of the biotin-tagged protein of interest ("bait"). The biotin-tagged recombinant protein "bait" can be used to identify novel proteins that specifically interact with the protein of interest or to test complex formation between proteins or protein domains for which there is a prior reason to expect an interaction.
NativePure [™] Mammalian Affinity Purification System	The NativePure [™] Mammalian Affinity Purification System is based on the TAP (Tandem Affinity Purification) method used to purify native protein complexes (Puig <i>et al.</i> , 2001). The purification of native protein complexes requires the use of a high affinity tag that allows rapid affinity purification of the tagged protein and associated protein complexes when present in low concentrations from cells without any prior information on the protein complex. The purified protein complexes are released from the affinity resin using a highly-specific protease under native conditions.
	The NativePure [™] pcDNA [™] Gateway [®] Vectors allow expression and <i>in vivo</i> biotinylation of your bait protein of interest. Rapid and efficient purification of the bait protein and associated complexes even when present at low concentrations is achieved using the streptavidin agarose included with the NativePure [™] Affinity Purification Kit. The biotin-tagged protein and associated protein complexes may be analyzed by native gel electrophoresis or other techniques such as mass spectrometry.
	The NativePure [™] Mammalian Affinity Purification System when combined with mass spectrometry provides a novel experimental approach to identify interacting proteins for proteome analysis or examine protein complexes that are part of specific cellular pathways, differentiation stages, or cell types.

Overview, continued

System Components	The NativePure [™] Mammalian Affinity Purification System consists of two kits, the NativePure [™] pcDNA [™] Gateway [®] Vector Kit and NativePure [™] Affinity Purification Kit.
	The NativePure TM pcDNA TM Gateway [®] Vector Kit includes:
	 Gateway[®]-adapted vectors that allow you to clone your gene of interest in frame with an N-terminal or C-terminal capTEV[™] tag that allows <i>in vivo</i> biotinylation of your protein. See next page for a description of the capTEV[™] tag
	• A control vector expressing the <i>ARPC2</i> (actin related protein complex component p34, (Robinson <i>et al.</i> , 2001)) gene fused to the capTEV [™] tag at the N-terminal end is included for use as a positive control for expression in the mammalian cell line of choice
	The NativePure [™] Affinity Purification Kit contains the following components to allow purification of biotinylated proteins and associated protein complexes expressed from vectors containing the capTEV [™] tag:
	Streptavidin Agarose
	• NativePure [™] Columns
	• Pre-made, ready-to-dilute lysis, binding and cleavage buffers
	• AcTEV [™] Protease
	• NativePure [™] Concentrators
	For more information about each component and its use, see the NativePure [™] Affinity Purification Kit manual. This manual is supplied with the NativePure [™] Affinity Purification Kit but is also available for downloading at www.invitrogen.com.

The NativePure^{M} pcDNA^{M} Gateway[®] Vector Kit is appropriate for use with established cell lines or cells that can be easily transfected. The user must optimize transfection conditions, and results may vary among cell types.

How the System Works	To express your biotinylated protein of interest in mammalian cells, construct N- and C-terminally tagged expression clones by performing LR recombination reactions between Gateway [®] entry vectors containing the gene of interest and both pcDNA [™] 3.2/capTEV [™] /V5-DEST vectors. The resulting expression clones allow expression of N- and C-terminally biotinylated proteins ("bait" protein) in mammalian cells. Since individual protein expression and biotinylation may vary with an N- or C- terminal fusion tag in your cell line, it is necessary to construct both versions and determine which expression clone is best for your application.
	Perform transfection of the pcDNA [™] 3.2/capTEV [™] N- and C-terminally tagged expression clones into mammalian cells to allow expression of biotinylated proteins and complex formation. Cells are lysed and the lysates are analyzed using Western analysis with a streptavidin conjugate to verify biotinylation of the protein of interest. The lysates are also analyzed using native gel electrophoresis to verify complex formation with the protein of interest.
	After optimizing the expression and biotinylation of the bait protein of interest, the biotinylated protein and associated protein complexes are purified under native conditions using the NativePure [™] Affinity Purification Kit (supplied with cat. no. BN3006 only, also available separately from Invitrogen). The associated complexes are analyzed by Western detection or mass spectrometry.
capTEV [™] Tag	The NativePure TM pcDNA TM Gateway [®] Vectors allow N- and C- terminal fusion of your recombinant protein of interest to the capTEV TM Tag. The capTEV TM Tag consists of a BioEase TM <i>in vivo</i> biotinylation peptide, two Tobacco Etch Virus (TEV) protease recognition sites, and a 6XHis tag.
	recombinant protein biotin
	6XHis TEV TEV BioEase [™] TEV cleavage sites
	The capTEV [™] tag facilitates <i>in vivo</i> biotinylation of the recombinant "bait" protein of interest. The biotin-tagged protein of interest forms complexes in your cell line of choice, which can be purified by binding to streptavidin agarose. The TEV sites

allow removal of the bound biotinylated proteins/complexes of interest while endogenous biotinylated proteins remain bound to the streptavidin agarose column. After TEV cleavage, a 6xHis tag is present for potential removal of the "bait" protein under denaturing conditions after protein complex purification. These features are described in detail in the following sections.

Overview, continued

BioEase [™] Tag	The BioEase TM Tag is a 72 amino acid peptide derived from the C-terminus (amino acids 524-595) of <i>Klebsiella pneumoniae</i> oxalacetate decarboxylase α -subunit that contains a single covalent biotinylation site at lysine 561 of the protein (Schwarz <i>et al.</i> , 1988). When fused to a heterologous protein, the 72 amino acid BioEase TM domain is both necessary and sufficient to facilitate recognition and <i>in vivo</i> biotinylation of the recombinant protein of interest by cellular biotinylation enzymes. The high-affinity and selectivity of the streptavidin-biotin interaction is utilized to efficiently purify the biotinylated protein and associated complexes by streptavidin agarose affinity chromatography (supplied with cat. no. BN3006, also available separately from Invitrogen). For ore information about cellular biotinylation processes, refer to published reviews (Chapman-Smith and J.E. Cronan, 1999).							
TEV Protease Recognition Site	Since the streptavidin/biotin interaction is extremely strong, removal of the bound protein complexes from the streptavidin agarose is achieved by cleavage with a protease. The TEV (Tobacco Etch Virus) Protease is a site-specific protease that allows efficient release of bound materials under native conditions (Rigaut <i>et al.</i> , 1999).							
	The NativePure [™] pcDNA [™] Gateway [®] Vectors are designed with two tandem TEV cleavage sites that promote >90% cleavage of the biotinylated recombinant protein and associated protein complexes from the streptavidin agarose during purification under native conditions.							
	AcTEV [™] Protease, an enhanced form of TEV protease that is highly active and specific (Nayak <i>et al.</i> , 2003) is supplied with cat. no BN3006 and also available separately from Invitrogen (page vii).							
	Note: Upon TEV cleavage, the biotin tag is lost, and protein detection can be performed using the V5 tag, see below.							
6XHis Tag	The capTEV [™] Tag includes a polyhistidine region (6XHis) for potential removal of the "bait" protein under denaturing conditions using a nickel charged affinity resin after purifying the protein complex using streptavidin agarose.							
V5 epitope	The NativePure [™] pcDNA [™] Gateway [®] Vectors contain a N- or C-terminal V5 epitope derived from the P and V proteins of the paramyxovirus SV5 (Southern <i>et al.</i> , 1991). Fusion proteins containing the 14 amino acid V5 epitope (GKPIPNPLLGLDST) can be identified using an anti-V5 antibody. See page vii for recommended antibodies and ordering information.							

Overview, continued

Features of the VectorsThe pcD•Hur cont cells•N- c puri cap1•• </th <th>NA[™]3.2/capTEV[™]/V5-DEST vectors contain the following elements: nan cytomegalovirus immediate-early (CMV) promoter/enhancer to rol expression of your gene of interest in a wide range of mammalian or C-terminal capTEV[™] Tag for <i>in vivo</i> biotinylation and affinity fication of recombinant proteins and associated complexes. The TEV[™] tag consists of: BioEase[™] Tag for <i>in vivo</i> protein biotinylation 2 Tobacco Etch Virus (TEV) protease recognition sites to remove bound biotinylated protein complexes after affinity purification with streptavidin agarose 6XHis tag for potential purification of protein complexes after TEV cleavage c C-terminal V5 epitope tag for detection of recombinant protein using -V5 antibodies o recombination sites, <i>att</i>R1 and <i>att</i>R2, for recombinational cloning of the <i>e</i> of interest from an entry clone <i>ccd</i>B gene located between the two <i>att</i>R sites for negative selection oramphenicol resistance gene located between the two <i>att</i>R sites for neterscreen Herpes Simplex Virus (HSV) thymidine kinase polyadenylation signal pA) for proper termination and processing of the recombinant transcript thergenic region for production of stable cell lines with Geneticin[®] C origin for high copy replication and maintenance of plasmid in <i>E. coli</i> is and features of the pcDNA[™]3.2/capTEV[™]-NT/V5-DEST and ^{™3.2}/capTEV[™]-CT/V5-DEST vectors, see pages 29-35.</th>	NA [™] 3.2/capTEV [™] /V5-DEST vectors contain the following elements: nan cytomegalovirus immediate-early (CMV) promoter/enhancer to rol expression of your gene of interest in a wide range of mammalian or C-terminal capTEV [™] Tag for <i>in vivo</i> biotinylation and affinity fication of recombinant proteins and associated complexes. The TEV [™] tag consists of: BioEase [™] Tag for <i>in vivo</i> protein biotinylation 2 Tobacco Etch Virus (TEV) protease recognition sites to remove bound biotinylated protein complexes after affinity purification with streptavidin agarose 6XHis tag for potential purification of protein complexes after TEV cleavage c C-terminal V5 epitope tag for detection of recombinant protein using -V5 antibodies o recombination sites, <i>att</i> R1 and <i>att</i> R2, for recombinational cloning of the <i>e</i> of interest from an entry clone <i>ccd</i> B gene located between the two <i>att</i> R sites for negative selection oramphenicol resistance gene located between the two <i>att</i> R sites for neterscreen Herpes Simplex Virus (HSV) thymidine kinase polyadenylation signal pA) for proper termination and processing of the recombinant transcript thergenic region for production of stable cell lines with Geneticin [®] C origin for high copy replication and maintenance of plasmid in <i>E. coli</i> is and features of the pcDNA [™] 3.2/capTEV [™] -NT/V5-DEST and ^{™3.2} /capTEV [™] -CT/V5-DEST vectors, see pages 29-35.
	Continued on next page

The Gateway [®] Technology	The Gateway [®] Technology is a universal cloning method that takes advantage of the site-specific recombination properties of bacteriophage lambda (Landy, 1989) Gateway [®] Technology enables rapid and highly efficient transfer of DNA sequences into multiple vector systems for protein expression and functional analysis while maintaining orientation and reading frame. To express your gene of interest using Gateway [®] Technology, simply:							
	 Clone your gene of interest with and without a stop codon into Gateway[®] entry vectors to create two entry clones. 							
	2. Generate two expression clones by performing LR recombination reactions between the appropriate entry clones and pcDNA [™] 3.2/capTEV [™] /V5-DEST vectors.							
	3. Transfect each expression clone separately into the cell line of choice for transient or stable expression of your gene of interest.							
	For more information on the Gateway [®] Technology, refer to the Gateway [®] Technology with Clonase [™] II manual. This manual is available for downloading (www.invitrogen.com) or by contacting Technical Service (page 36).							

Experimental Outline

Experimental Outline

Outlined below are steps to clone your gene of interest into the pcDNA[™]3.2/capTEV[™]/V5-DEST vectors to express and analyze your recombinant biotinylated proteins of interest.

Step	Action
1	Clone your gene of interest with and without a stop codon into a Gateway [®] entry vector to create two entry clones.
2	Generate two expression clones (N and C-terminally tagged) by performing LR recombination reactions between the appropriate entry clones and the pcDNA [™] 3.2/capTEV [™] -NT/V5-DEST and pcDNA [™] 3.2/capTEV [™] -CT/V5-DEST vectors.
3	Transfect each of the expression clones separately into the cell line of choice for expression of your biotinylated protein of interest.
4	Confirm <i>in vivo</i> biotinylation of recombinant protein by SDS-PAGE and detection on a Western blot using a streptavidin conjugate.
5	Confirm complex formation with biotinylated recombinant protein by native gel electrophoresis and detection on a Western blot using a streptavidin conjugate.
6	Purify the biotinylated protein and associated protein complexes using NativePure [™] Affinity Purification Kit.
7	Analyze protein complexes using native electrophoresis, SDS- PAGE, immunodetection, or mass spectrometry.

Methods

Generating Entry Clones

Introduction	To recombine your gene of interest into both pcDNA [™] 3.2/capTEV [™] -NT/V5- DEST and pcDNA [™] 3.2/capTEV [™] -CT/V5-DEST vectors, you will generate two entry clones containing your gene of interest with and without a stop codon. This section provides guidelines for generating entry clones.
Choosing an Entry Vector	Many entry vectors are available from Invitrogen to facilitate generation of entry clones. We recommend pENTR [™] /D-TOPO [®] or pCR8/GW/TOPO [®] for rapid cloning of your gene of interest using TOPO [®] technology (see page vii for ordering information).
	You may also perform a BP recombination reaction using a PCR product containing <i>att</i> B sites and an <i>att</i> P-containing pDONR ^{T} vector to create your entry clone. A large selection of pDONR ^{T} vectors is available from Invitrogen.
	For more information, go to www.invitrogen.com or contact Technical Service (page 36). Refer to the manual for the specific vector you are using for detailed instructions to construct entry clones.
	If you are using an Ultimate [™] ORF (open reading frame) clone from Invitrogen

Note

If you are using an Ultimate^{TD} ORF (open reading frame) clone from Invitroge as the source of your gene of interest, you may do the following:

For N-terminal tagged protein:

Use Ultimate[™] ORF clones directly as an entry vector for LR recombination with pcDNA[™]3.2/capTEV[™]-NT/V5-DEST to generate your entry clone.

- For C-terminal tagged protein:
- Do **NOT** use Ultimate[™] ORF clones directly as an entry clone for LR recombination with pcDNA[™]3.2/capTEV[™]-CT/V5-DEST to generate your entry clone due to the presence of the TAG **stop codon**.
- Use Ultimate[™] ORF clone as a template to amplify the gene of interest using primers that modify the stop codon, and clone the template **without** the stop codon into the entry vector of choice (page 8).

For more information about the Ultimate[™] ORF collection, go to www.invitrogen.com or contact Technical Service (page 36).

Generating Entry Clones, continued

N- and C-Terminal Expression Clones	Individual expression and <i>in vivo</i> biotinylation of the protein of interest in your mammalian cell line may vary depending on whether your protein of interest is fused to an N-terminal or C-terminal tag. We strongly recommend that you recombine your gene of interest into both pcDNA [™] 3.2/capTEV [™] -V5-DEST vectors to create both N- and C- terminally tagged expression clones, and determine which clone gives optimal protein biotinylation and complex formation after transfection into mammalian cells. Therefore, you will need to create two entry vectors containing your gene of interest with either a stop codon (N-terminal tagged, recombine with pcDNA [™] 3.2/capTEV [™] -NT/V5-DEST) or a Kozak translation initiation sequence and no stop codon (C-terminal tagged, recombine with pcDNA [™] 3.2/capTEV [™] -CT/V5-DEST). These required elements are summarized below.								
	To make an entry clone to recombine with	Then your gene of interest must contain							
	pcDNA [™] 3.2/capTEV [™] -NT/V5-DEST	Stop codon							
	pcDNA [™] 3.2/capTEV [™] -CT/V5-DEST	Kozak consensus sequence (see below)							
		No stop codon							
	Make sure that your gene of interest is in frame with the N- or C- terminal capTEV [™] tag and other vector elements after performing the LR recombination reaction with the pcDNA [™] 3.2/capTEV [™] -V5-DEST vectors. Refer to pages 11-12 to see the recombination regions of the vectors.								
Kozak Consensus Sequence When recombining into the pcDNA [™] 3.2/capTEV [™] -CT/V5-DEST ve design for your entry clone must contain a Kozak translation initiati sequence with an ATG initiation codon for proper initiation of trans (Kozak, 1987; Kozak, 1991; Kozak, 1990). An example of a Kozak con sequence is provided below. The ATG initiation codon is shown une (G/A)NNATGG									
	Other sequences are possible, but the G or A at position -3 and the G at position +4 are the most critical for function (shown in bold).								

Creating N- and C-Terminal Tagged Expression Clones

Introduction	After you have generated both entry clones, perform LR recombination reactions to transfer the gene of interest into the pcDNA [™] 3.2/capTEV [™] V5/DEST vectors to create your expression clones. To ensure that you obtain the best results, we recommend that you read this section and the next section entitled Performing the LR Recombination Reactions (pages 13-15) before beginning.										
Resuspending the Vectors	Jing the The pcDNA [™] 3.2/capTEV [™] V5/DEST vectors are supplied as 6 μg of plasmid, lyophilized in TE, pH 8.0. To use, resuspend the plasmid in 40 μl sterile water a final concentration of 150 ng/μl.										
Propagating the Vectors	If you wish to propagate and maintain the pcDNA ^{TM} 3.2/capTEV ^{TM} V5-DEST vectors, we recommend using One Shot [®] ccdB Survival T1 ^R Chemically Competent <i>E. coli</i> from Invitrogen for transformation (see page vii for ordering information). The ccdB Survival T1 ^R <i>E. coli</i> strain is resistant to ccdB effects and can support the propagation of plasmids containing the ccdB gene. To maintain the integrity of the vectors, select for transformants in media containing 50-100 µg/ml ampicillin and 15-30 µg/ml chloramphenicol. Note: Do not use general <i>E. coli</i> cloning strains including TOP10 or DH5 α^{TM} for propagation and maintenance as these strains are sensitive to ccdB effects										
Experimental	To generate an expression clone, you will:										
Outline	1. Perform an LR recombination reaction using each <i>att</i> L-containing entry clone and the appropriate <i>att</i> R-containing pcDNA [™] 3.2/capTEV [™] V5/DEST vector.										
	2. Transform the reaction mixtures into a suitable <i>E. coli</i> host.										
	3. Select for expression clones (refer to the next pages for diagrams of the recombination regions of the resulting expression clones).										
	Carting and and										

Creating N- and C-Terminal Tagged Expression Clones, continued

Recombination Region of	The recombination region of the expression clone resulting from pcDNA [™] 3.2/capTEV [™] -NT/V5-DEST × entry clone is shown below.																
pcDNA [™] 3.2/	Features of the Recombination Region:																
capTEV [™] -NT/V5-	•	Light s	haded	regior	ns corre	espoi	nd to	o the	cap	TEV	[™] ta	g					
DEST	• Dark shaded regions between the <i>att</i> B sites correspond to DNA sequences transferred from the entry clone into pcDNA [™] 3.2/capTEV [™] -NT/V5-DEST by recombination. Non-shaded and light shaded regions are derived from the pcDNA [™] 3.2/capTEV [™] -NT/V5-DEST vector.																
	• The overlined nucleotides flanking the shaded region correspond to bases 1212 and 3457 of the pcDNA [™] 3.2/capTEV [™] -NT/V5-DEST vector sequence.																
					C	MV Fo	rward	Primi	ng Sit	te	1			г	ΑΤΑ		
	733	TCGTAACA	AC TCCG	CCCCAI	T TGACG	CAA1 CAAA1	- 1 r ggg	CGGT	AGG	CGTG	TACG	GT G	GGAG	F gtci	TA TA) TAAC	GCAGA
	803	GCTCTCTG	GC TAAC	TAGAGA	A ACCCA	.CTGC1	f tac	TGGC	TTA	TCGA	AATT.	AG C	TTCA	CC A	Met G ATG G TAC C	GC (Ala GCC CGG
		Class mbro	BioE	ase [™] Ta	ag	Tou	7,1,0	<u></u>	mb m	т1.	T 1010	Tura	\$7o]	Tau	7,10	Com	Clu
	869	GGC ACC CCG TGG	CCG GTG GGC CAC	ACC O	ALA PIC GCC CCG CGG GGC	CTG GAC	GCG CGC	GLÀ GCC CCC	ACT TGA	ATC TAG	TGG . ACC	Lys AAG TTC	VAI GTG CAC	Leu CTG GAC	GCC CGG	AGC TCG	GAA CTT
	926	Gly Gln GGC CAG CCG GTC	Thr Val ACG GTG TGC CAC	Ala A GCC G CGG C	Ala Gly GCA GGC CGT CCG	Glu GAG CTC	Val GTG CAC	Leu CTG GAC	Leu CTG GAC	Ile ATT TAA	Leu CTG GAC <i>n vivo</i>	Glu GAA CTT bioti i	Ala GCC CGG nylatic	Met ATG TAC on site	Lys AAG TTC *	Met ATG TAC	Glu GAA CTT
	983	Thr Glu ACC GAA TGG CTT	Ile Arg ATC CGC TAG GCG	Ala A GCC G CGG C	Ala Gln GCG CAG CGC GTC	Ala GCC CGG	Gly GGG CCC	Thr ACC TGG	Val GTG CAC	Arg CGC GCG	Gly GGT CCA	Ile ATC TAG	Ala GCG CGC	Val GTG CAC	Lys AAA TTT	Ala GCC CGG	Gly GGC CCG
	1040	Asp Ala GAC GCG CTG CGC	Val Ala GTG GCG CAC CGC	Val G GTC G CAG C	Gly Asp GGC GAC CCG CTG	Thr ACC TGG	Leu CTG GAC	Met ATG TAC	Thr ACC TGG	Leu CTG GAC	Ala GCG CGC	Gly GGC CCG	Ser TCT AGA	Gly GGA CCT	Ser TCC AGG	Glu GAG CTC	Asn AAT TTA
		TEV Reco	gnition Site		~ 7 ~	~1	IE	v Rec	ogniu	ion Si	ie al	~]	~ 1	-	07	HIS	ag
	1097	Leu Tyr CTT TAT GAA ATA	Phe GIn TTT CAG AAA GTC	GLY G GGT C CCA G	Gln Leu CAA TTG GTT AAC	GLU GAG CTC	Asn AAT TTA	Leu CTT GAA TEV	Tyr TAT ATA Clear	Phe TTT AAA	GIn CAG GTC	GLY GGT CCA	Gln CAA GTT	Leu TTG AAC	His CAT GTA	His CAT GTA	His CAT GTA
			vage Sile	-				V5 E	Epitor	be	0.110						
	1154	His His CAT CAT GTA GTA	His Gly CAT GGT GTA CCA	Lys E AAG C TTC C	Pro Ile CCT ATC GGA TAG	Pro CCT GGA	Asn AAC TTG	Pro CCT GGA	Leu CTC GAG	Leu CTC GAG	Gly GGT CCA	Leu CTC GAG	Asp GAT CTA	Ser TCT AGA	Thr ACG TGC	Thr ACA TGT	Ser AGT TCA
		1212	<i>att</i> B1						_	attB	2	34	57			_	
	1211	L <u>e</u> u Tyr TTG TAC AAC ATG	Lys Lys AAA AAA TTT TTT	Ala G GCA G CGT G	Gly GGC TNN CCG ANN		GENE	***	NAC NTG	CCAG	GAA] TCTT AGAA	GTAC CATG	AA A TT I	AGTGO CACO	 STGA1 CACT <i>I</i>	ΓA \T

Creating N- and C-Terminal Tagged Expression Clones, continued

Recombination Region of	The pcE	e rec DNA	omł ™3.2	oina 2/ca	tion apTI	reg EV™-	ion -CT	of th /V5	ne e> -DE	kpre ST ×	ssio ent	n clo ry c	one i lone	resu is s	ltinį how	g fro vn b	om elov	v.					
pcDNA [™] 3.2/	Features of the Recombination Region:																						
capTEV [™] -CT/V5-	•	Light shaded regions correspond to the cap $\mathrm{TEV}^{^{\mathrm{M}}}$ tag																					
DEST	•	Dark shaded regions between the <i>att</i> B sites correspond to DNA sequences transferred from the entry clone into pcDNA [™] 3.2/capTEV [™] -CT/V5-DEST by recombination. Non-shaded and light shaded regions are derived from										nces DEST from											
		The overlined nucleotides flanking the sheded version correspond to become																					
	•	1 he 882	e ovo anc	erin 131	ned 1 27 o	f the	eoti e pcl	ides flanking the shaded region correspor DNA™3.2/capTEV [™] -CT/V5-DEST vector										ona or se	nd to bases r sequence.				
	710	TCG	[AAC]	AC	ICCG	CCCCI	AT TO	GACGO	CAAT	T GGO	GCGG	FAGG	CGTC	GTACG	GT G	GGAG	F GGTCI	TATA	I TAAG	CAGA			
	780	GCT	TTCTC	GC	TAAC	PAGA	3A A(CCA	TTGC	г тас	TTGG	TTTA	TCGA	ΑΑΤΤ	T AA'	ACGA	ACTCZ	C TA	TAGO	GAGA			
	100	0010						00011		88	32		1001				10101	го т					
	850	CCCZ	AGCI	ſGG	CTAG	TTAA	GC TA	ATCAZ	ACAAC	G TT	GTAC	B1 CAAA	AAAG	GCAGG	CTNN	ATC	G GEN	IE NA	- Pr	o Ala A GCT			
		312	27				A	TAGTI	CGTTO	C AAA	ACAT	GTTT	TTTC	GTCC	GANN	I TAC	2	NI	'G GG	T CGA			
	3125	Phe TTC	Leu TTG	tt B2 Tyr TAC	Lys AAA	Val GTG	Val GTT	Asp GAT	Leu CTA	Glu GAG	Gly GGC	Pro CCG	Arg CGG	Phe TTC	Glu GAA	Gly GGT	Lys AAG	Pro CCT	Ile ATC	Pro CCT			
		V5 (C	-term) reve	erse n	rimin	caa site	CTA	GAT	CTC	CCG	GGC	GCC	AAG	CTT	CCA	TTC	GGA	TAG	GGA			
		Asn	Pro	Leu	Len	Glv		Asp	Ser	ope Thr	Ara	Thr	Glv	His	His	6XH	lis Tag s His) s His	His	ר			
	3182	AAC TTG	CCT GGA	CTC GAG	CTC GAG	GGT CCA	CTC GAG	GAT CTA	TCT AGA	ACG TGC	CGT GCA	ACC TGG	GGG CCC	CAT GTA	CAT GTA	CAT GT	r cai a gt <i>r</i>	CAT GTA	CAT GTA				
			·	TEV	/ Reco	ognitic	on Site	e					TEV	Reco	gnitio	n Site)						
	3236	Gly GGT CCA	Glu GAG CTC	Asn AAT TTA	Leu CTT GAA TE	Tyr TAT ATA V Clea	Phe TTT AAA avage	Gln CAG GTC Site	Gly GGT CCA	Gln CAA GTT	Leu TTG AAC	Glu GAG CTC	Asn AAT TTA	Leu CTT GAA TEV	Tyr TAT ATA Cleav	Phe TTT AAA	Gln CAG GTC Site	Gly GGT CCA	Gly GGC CCG	Ala GCC CGG			
			m1	2		-		-	-	BioE	ase™	Tag	- 1	-	-		-	- 1	~	a]			
	3293	GLY GGC CCG	Thr ACC TGG	CCG GGC	GTG CAC	Thr ACC TGG	Ala GCC CGG	Pro CCG GGC	Leu CTG GAC	Ala GCG CGC	GLY GGC CCG	Thr ACT TGA	ATC TAG	Trp TGG ACC	Lys AAG TTC	Val GTG CAC	Leu CTG GAC	Ala GCC CGG	Ser AGC TCG	GAA CTT			
	3350	Gly GGC	Gln CAG	Thr ACG	Val GTG	Ala GCC	Ala GCA	Gly GGC	Glu GAG	Val GTG	Leu CTG	Leu CTG	Ile ATT	Leu CTG	Glu GAA	Ala GCC	Met ATG	Lys AAG	Met ATG	Glu GAA			
		CCG	GTC	TGC	CAC	CGG	CGT	CCG	CTC	CAC	GAC	GAC	TAA	GAC In vivo	CTT bioti	CGG nvlati	TAC on sit	TTC e	TAC	CTT			
		Thr	Glu	Tle	Ara	Ala	Ala	Gln	Ala	Glv	Thr	Val	Ara	Glv	Tle	Ala	Val	Lvs	Ala	Glv			
	3407	ACC TGG	GAA CTT	ATC TAG	CGC GCG	GCC CGG	GCG CGC	CAG GTC	GCC CGG	GGG CCC	ACC TGG	GTG CAC	CGC GCG	GGT CCA	ATC TAG	GCG CGC	GTG CAC	AAA TTT	GCC CGG	GGC CCG			
	3464	Asp GAC CTG	Ala GCG CGC	Val GTG CAC	Ala GCG CGC	Val GTC CAG	Gly GGC CCG	Asp GAC CTG	Thr ACC TGG	Leu CTG GAC	Met ATG TAC	Thr ACC TGG	Leu CTG GAC	Ala GCG CGC	Gly GGC CCG	Ser TCT AGA	Gly GGA CCT	Ser TCC AGG	*** TAG ATC	* * * TAA ATT			
			200		2.50		TK	poly	A reve	erse p	rimer	2.50		2.50									
	3521	*** TGA TCT	GTTI	FAAA	CGG (GGGA	GGCT	AA CI	[GAA	ACACO	G GAI	AGGAC	GACA										

Performing the LR Recombination Reactions

Introduction	Once you have obtained the entry clones containing your gene of interest, you may perform LR recombination reactions between the entry clones and pcDNA [™] 3.2/capTEV [™] V5-DEST vectors, and transform the reaction mixture into a suitable <i>E. coli</i> host (see below) to select for expression clones. We recommend including a negative control (no LR Clonase [™] II) in your experiment to help evaluate your results.								
<i>E. coli</i> Host	You may use any <i>recA</i> , <i>endA E</i> . <i>coli</i> strain including TOP10, DH5 α^{TM} , or equivalent for transformation (page vii). Do not transform the LR reaction mixture into <i>E</i> . <i>coli</i> strains that contain the F' episome (<i>e.g.</i> TOP10F'). These strains contain the <i>ccdA</i> gene and will prevent negative selection with the <i>ccdB</i> gene.								
LR Clonase [™] II Enzyme Mix	LR Clonase [™] II enzyme mix is available separately from Invitrogen (page vii) to catalyze the LR recombination reactions. The LR Clonase [™] II enzyme mix combines the proprietary enzyme formulation and 5X LR Clonase [™] Reaction Buffer previously supplied as separate components in LR Clonase [™] enzyme mix into an optimized single-tube format for easier set-up of the LR recombination reaction. Use the protocol provided on the next page to perform the LR recombination reaction using LR Clonase [™] II enzyme mix.								
Materials Needed	 You will need the following materials before beginning: Purified plasmid DNA of your entry clone with stop codon (50-150 ng/µl in TE, pH 8.0) Purified plasmid DNA of your entry clone without stop codon (50-150 ng/µl in TE, pH 8.0) pcDNA[™]3.2/capTEV[™]-NT/V5-DEST (150 ng/µl in TE, pH 8.0) pcDNA[™]3.2/capTEV[™]-CT/V5-DEST (150 ng/µl in TE, pH 8.0) LR Clonase[™] II enzyme mix (keep at -20°C until immediately before use) TE Buffer, pH 8.0 (10 mM Tris-HCl, pH 8.0, 1 mM EDTA) 2 µg/µl Proteinase K solution (supplied with LR Clonase[™] II enzyme mix; thaw and keep on ice until use) pENTR[™]-gus (supplied with LR Clonase[™] II enzyme mix; use as a control for the LR reaction; 50 ng/µl) Appropriate competent <i>E. coli</i> host and growth media for expression S.O.C. Medium Selective LB agar plates containing 100 µg/ml ampicillin 								
	Continued on next page								

Performing the LR Recombination Reactions continued

LR Reaction

Follow this procedure to perform both LR reactions between each of your entry clones and pcDNA[™]3.2/capTEV[™]-V5-DEST vectors. To include a negative control, set up a second sample reaction, but omit the LR Clonase[™] II enzyme mix.

1. Add the following components to 1.5 ml microcentrifuge tubes at room temperature and mix.

Component	NT-tag Entry Clone	CT-tag Entry Clone	Positive Control
Entry clone (without stop, 50-150 ng/rxn)		1-7 µl	
Entry clone (with stop, 50-150 ng/rxn)	1-7 µl		
pcDNA [™] 3.2/capTEV [™] -NT/V5- DEST (150 ng/µl)	1 µl		1 µl
pcDNA [™] 3.2/capTEV [™] -CT/V5- DEST (150 ng/µl)		1 µl	
pENTR [™] -gus (50 ng/µl)			2 µl
TE Buffer, pH 8.0	to 8 µl	to 8 μl	5 µl

- Remove the LR Clonase[™] II enzyme mix from -20°C and thaw on ice (~ 2 minutes).
- 3. Briefly vortex the LR Clonase[™] II enzyme mix twice (2 seconds each time).
- To each sample above, add 2 µl of LR Clonase[™] II enzyme mix. Mix well by pipetting up and down.
 Reminder: Return LR Clonase[™] II enzyme mix to -20°C immediately after use.
- Incubate reactions at 25°C for 1 hour.

Note: Extending the incubation time to 18 hours typically yields more colonies.

- 6. Add 1 μ l of the Proteinase K solution to each reaction. Incubate for 10 minutes at 37°C.
- Transform 1 μl of the LR recombination reaction into a suitable *E. coli* host (follow the manufacturer's instructions) and select for expression clones.

Note: You may store the LR reaction at -20°C for up to 1 week before transformation, if desired.

Performing the LR Recombination Reactions, continued

What You Should See	If you use <i>E. ca</i> reaction shoul plated.	<i>coli</i> cells with a transformation efficiency of $\ge 1 \times 10^8$ cfu/µg, the LR uld give > 5,000 colonies if the entire reaction is transformed and							
Confirming the Expression Clone	The <i>ccd</i> B gene mutates at a very low frequency, resulting in a very low number of false positives. True expression clones will be ampicillin-resistant and chloramphenicol-sensitive. Transformants containing a plasmid with a mutated <i>ccd</i> B gene will be both ampicillin- and chloramphenicol-resistant. To check your putative expression clone, test for growth on LB plates containing 30 µg/ml chloramphenicol. A true expression clone will not grow in the presence of chloramphenicol.								
Sequencing	To confirm that your gene of interest is in frame with the N- and C-terminal capTEV [™] Tag, you may sequence your expression construct. We suggest using the following primer sequences. Refer to the diagrams on pages 11-12 for the location of the primer binding sites.								
Vector		Primer	Sequence						

Vector	Primer	Sequence
pcDNA [™] 3.2/capTEV [™] -NT/V5-DEST	CMV forward	5'-CGCAAATGGGCGGTAGGCGTG-3'
pcDNA [™] 3.2/capTEV [™] -CT/V5-DEST	TK polyA	5'-CTTCCGTGTTTCAGTTAGC-3'
	V5 (C-term) reverse	5'-ACCGAGGAGAGGGTTAGGGAT-3'

For your convenience, Invitrogen offers a custom primer synthesis service. For more information, go to www.invitrogen.com or contact Technical Service (page 36).

Long-Term Storage Once you have identified the correct clone, be sure to purify the DNA and make a glycerol stock for long-term storage. We also recommend that you store a stock of plasmid DNA at -20°C. Streak the original colony out for single colonies on an LB plate containing 100 μg/ml ampicillin. Isolate a single colony and inoculate into 1-2 ml of LB containing 100 μg/ml ampicillin. Grow at 37°C with shaking until culture reaches stationary phase.

- 4. Mix 0.85 ml of culture with 0.15 ml of sterile glycerol.
- 5. Transfer to a cryovial and store at -80°C.

Transient Transfection of Cells

Introduction	After generating your expression clones, we recommend performing transient transfection of your cell line of choice followed by Western detection of biotinylated protein to determine which expression clone is optimal. This section provides general information for transiently transfecting your expression clones into the mammalian cell line of choice. We recommend that you include the positive control vector (pcDNA [™] 3.2/capTEV [™] -NT-GW/ARPC2, see below) and a mock transfection (negative control) in your experiments to evaluate your results.
Plasmid Preparation	Once you have generated your expression vectors, isolate plasmid DNA for transfection. Plasmid DNA for transfection into eukaryotic cells must be clean and free of contamination from phenol and sodium chloride. Contaminants will kill the cells, and salt will interfere with lipid complexing, decreasing transfection efficiency. We recommend isolating plasmid DNA using the PureLink [™] HQ Mini Plasmid Purification Kit (page vii). Other methods of obtaining high quality plasmid DNA may be suitable.
Positive Control Plasmid	 The NativePure[™] pcDNA[™] Gateway[®] Vector Kits contain a positive control plasmid (pcDNA[™]3.2/capTEV[™]-NT-GW/ARPC2) expressing the ARPC2 (actin related protein complex component p34, Robinson <i>et. al.</i> 2001) with an N-terminal capTEV[™] tag. The control vector is supplied lyophilized. Resuspend the vector in 10 µl TE or sterile water to a final concentration of 1 µg/µl. You can transfect mammalian cells with this stock or propagate and maintain the plasmid as described below: 1. Use 1 µl of the control vector to transform a <i>recA</i>, <i>endA E. coli</i> strain like TOP10, DH5a[™], or equivalent. 2. Select transformants on LB agar plates containing 100 µg/ml ampicillin. 3. Prepare a glycerol stock of a transformant containing plasmid for long-term storage (see previous page for a protocol for preparing glycerol stocks).

Transient Transfection, continued

Methods of Transfection

For established cell lines, consult the original references or the supplier of your cell line for the optimal method of transfection. We recommend that you exactly follow the protocol for your cell line. Pay particular attention to medium requirements, when to pass the cells, and at what dilution to split the cells. Further information is provided in *Current Protocols in Molecular Biology* (Ausubel *et al.*, 1994).

Methods for transfection include calcium phosphate (Chen and Okayama, 1987; Wigler *et al.*, 1977), lipid-mediated (Felgner *et al.*, 1987; Felgner *et al.*, 1989; Felgner and Ringold, 1989) and electroporation (Chu *et al.*, 1987; Shigekawa and Dower, 1988).

For high-efficiency transfection in a broad range of mammalian cell lines, we recommend using the cationic lipid-based Lipofectamine[™] 2000 Reagent (Ciccarone *et al.*, 1999) available from Invitrogen. Using Lipofectamine[™] 2000 (see page vii) to transfect plasmid DNA into eukaryotic cells offers the following advantages:

- Provides the highest transfection efficiency in many mammalian cell types.
- DNA-Lipofectamine[™] 2000 complexes can be added directly to cells in culture medium in the presence of serum.
- Removal of complexes, medium change, or medium addition following transfection are not required, although complexes can be removed after 4-6 hours without loss of activity.

For more information on Lipofectamine[™] 2000 Reagent, go to www.invitrogen.com or contact Technical Service (see page 36).

After transfecting your cells with the pcDNA[™] 3.2/capTEV[™] N- and C-terminal expression constructs, we strongly recommend that you confirm the biotinylation of your protein of interest and the ability of the tagged protein to form complexes prior to proceeding with purification or analysis experiments.

Transient vs. Stable Transfection

It is not necessary to create stable cell lines for purification or analysis

experiments. However you may transiently transfect your cells, confirm biotinylation of your protein of interest and the ability of the tagged protein to form complexes (see next section), then transfect your mammalian cells with the optimal expression construct and select for stable transfectants using Geneticin[®] selective antibiotic. See the protocol in the Appendix (page 29).

Detecting Protein Biotinylation and Complex Formation

Introduction	After transfecting your cells with the pcDNA [™] 3.2/capTEV [™] N- and C-terminal expression constructs, we strongly recommend that you confirm the biotinylation of your protein of interest and the ability of the tagged protein to form complexes prior to proceeding with purification or analysis experiments. This section includes instructions to verify biotinylation using SDS-PAGE and to verify complex formation using native electrophoresis followed by Western detection with streptavidin conjugate.
Experimental Outline	 To detect protein biotinylation and complex formation, you will: 1. Prepare cell lysate using freeze-thaw cycles (no SDS buffers). 2. Analyze lysate by: SDS-PAGE Native gel electrophoresis using NativePAGE[™] gels 3. Perform two Western blots, one using the SDS-PAGE gel and other using the NativePAGE[™] gel. 4. Develop the blots with streptavidin conjugate using the WesternBreeze[®] Kits.
Important	 The cell lysate is prepared using mild conditions for lysis to enable analysis of protein complexes. The cell lysis protocol included in this section allows you to use the same lysate for analysis using native (non-denaturing) electrophoresis and denaturing SDS-PAGE. We recommend using freeze-thaw cycles for cell lysis to obtain intact protein complexes. Trypsin treatment or scraping the cells is not recommended as these methods cause cell damage and dissociation of protein complexes. If you have already performed trypsin treatment, inactivate trypsin using medium with 10% FBS. Wash cells three times with 1X PBS before lysing the cells. Perform cell lysis in the absence of NP40 as some protein complexes maybe unstable in the presence of NP40.

- During lysate preparation, avoid vortexing the lysate as it can dissociate the protein complexes.
- If your sample is in a SDS-PAGE sample buffer, prepare a fresh lysate **without** SDS using the protocol on page 21 for native electrophoresis. **Do not** use SDS-PAGE samples for native gel electrophoresis.

Streptavidin Conjugates	Use the strong interaction between biotin and streptavidin to easily detect your recombinant biotinylated protein with one of the following streptavidin conjugates:			
		Conjugate	Catalog Number	
		Streptavidin-AP	SA100-01	
		Streptavidin-HRP	SA100-03	
	Ready-t availabl page vii	o-use WesternBreeze® C e from Invitrogen to fac for ordering informatic	Chromogenic and Chemi ilitate detection of strep on).	lluminescent Kits are tavidin conjugates (see
NativePAGE [™] Gel Electrophoresis	The Nat polyacry electrop results i band res native e system j membra estimati A variet are avai	ivePAGE [™] Novex [®] Bis- ylamide mini gel system horesis. The near neutra n maximum stability of solution than other gel s lectrophoresis (Laemml provides a sensitive and me protein complexes, r ons, and assessing the p cy of NativePAGE [™] gels lable from Invitrogen (p	Tris Gel system is a near a to perform native (non al pH 7.5 environment d both proteins and gel m systems including the tra i) system. The NativePA high-resolution method native soluble proteins, r purity of native proteins. and pre-made buffers for age viii).	neutral pH, pre-cast -denaturing) uring electrophoresis natrix, providing better aditional Tris-glycine AGE [™] Novex [®] Bis-Tris Gel d for analysis of native molecular mass
SDS-PAGE	You may (page vi an appro of intere	y use NuPAGE® Novex i), or any other SDS/PA opriate percentage of ac est.	Bis-Tris Gel (page vii), l GE gel of choice for per rylamide gel that will b	Novex [®] Tris-Glycine Gel forming SDS/PAGE. Use est resolve your proteins
Note	The N-te approxi (includit of your	erminal fusion tag (inclu mately 12.5 kDa to the s ng capTEV [™] and V5 epi protein.	ıding capTEV [™] and V5 o ize of your protein. The tope tag) adds approxin	epitope tag) adds C-terminal fusion tag nately 15.1 kDa to the size

Materials Needed	You will need the following materials and equipment:
	• Transiently transfected cells (<i>i.e.</i> 24 hours after transfection)
	• 1X phosphate-buffered saline (PBS, see page vii)
	Complete protease inhibitor (Roche cat. no 1697498 or equivalent)
	Pepstatin (Roche cat. no 1359053 or equivalent)
	Deionized water
	 NativePure[™] 5X Lysis/Binding Buffer (supplied with BN3006 or see below for buffer composition)
	 Protein quantification kit (such as Quant-iT[™] Protein Assay Kit, page vii)
	Protein standards (page viii)
	Optional: Benzonase nuclease
	 NativePAGE[™] gels (page viii) or equivalent for native electrophoresis
	NuPAGE [®] Novex Bis-Tris Gels or Tris-Glycine gels (page vii) for SDS-PAGE
	Appropriate units for electrophoresis and blotting
	Streptavidin conjugate (page vii)
	WesternBreeze [®] Detection Kits (page vii) or equivalent
1X Lysis Buffer	For each experiment, you will have 4 transiently transfected cell samples: (N- and C-terminal, positive and negative controls). You will need to make ~2-4 ml of 1X Lysis Buffer per sample, depending on the volume of your samples (<i>i.e.</i> 30 ml flask, 10 cm dish, T-175 flask, see next section).
	Prepare 1X Lysis Buffer to obtain the following 1X final concentration. For cat. no. BN3006, refer to the manual supplied with the NativePure [™] Affinity Purification Kit for details.
	100 mM Tris-HCl, pH 8.0
	100 mM KCI
	200 µM EDTA
	1.5 mW MgCl ₂ 1X (700 ng (ml) Popetatin (Pacha est, no 1250052 or aquivalent)
	Complete protesse inhibitor (Roche cat. no 1607/08 or equivalent)
	Store the huffer on ice until use You may aliquot the huffer and store the aliquots
	at -20°C, if needed.

Preparing Cell Lysate Under Native Conditions	 Harvest suspension cells by centrifugation. We generally use cells from a 30 ml flask. Wash the cells twice in phosphate buffered saline (PBS). Resuspend the cell pellet in 4 ml 1X Lysis Buffer (see previous page for a recipe). Proceed to Step 4.
	2. Wash adherent cells with PBS. Remove the PBS and add 0.5-1 ml 1X Lysis Buffer/10 cm culture dish containing adherent cells. For a T-175 flask, use 2 ml 1X Lysis Buffer.
	3. Harvest cells by pipetting up and down. Transfer the cells to a sterile tube.
	4. Perform 3 freeze-thaw cycles to lyse the cells.
	5. Centrifuge the lysate at 10,000 x g for 10 minutes at 4°C.
	6. Transfer the post-nuclear supernatant to a sterile tube. Aliquot the supernatant and perform protein estimation on an aliquot of the lysate using the Quant-iT [™] Protein Kit (page vii) or Bradford protein assay. Store aliquots at -80°C until use.
Electrophoresis and Blotting	Guidelines are provided to prepare samples for native electrophoresis and SDS- PAGE. For details, refer to the manuals supplied with the gels. NativePAGE [™] Electrophoresis
	For complex with high DNA content such as tissue or cell complex we recommend
	a benzonase (endonuclease) treatment to reduce protein streaking as follows:
	To the sample from Step 6, add $MgCl_2$ to a final concentration of 2 mM and 1-2 units benzonase per µl of sample. Mix well and incubate at room temperature for 30-60 minutes. Centrifuge the lysate at 20,000 x g for 30 minutes at 4°C.
	For NativePAGE [™] electrophoresis, add NativePAGE [™] Sample Buffer (4X) to obtain a final concentration of 1X in the sample. Do not heat the samples. Load the samples onto the NativePAGE [™] Gel and load NativeMark [™] Unstained Protein Standard (page vii). Perform electrophoresis using the conditions listed in the NativePAGE [™] manual.
	SDS-PAGE
	To the sample from Step 6, above, add NuPAGE [®] LDS Sample Buffer (4X) or Tris- Glycine SDS Sample Buffer (2X) to obtain a final concentration of 1X in the sample.
	Add reducing agent (DTT) to a final concentration of 50 mM. Heat the samples at 85°C for 2-5 minutes. Load the samples onto the SDS gel and load appropriate molecular weight standard (page vii). Perform electrophoresis using the conditions listed in the manual supplied with the gel.
	Western Analysis
	Perform Western blotting with nitrocellulose or PVDF membranes (page vii). After blocking, probe the blot with a suitable dilution of streptavidin-AP or -HRP conjugate and develop the blot using the WesternBreeze [®] Chromogenic or Chemiluminescent Kits.

What You Should See	After SDS-PAGE and Western blotting with streptavidin conjugate, the protein of interest should exhibit biotinylation of the protein. Note that you will see background bands due to endogenous biotinylated proteins. The level of biotinylation may vary between the N- and C-terminally tagged protein or may be similar. If you do not observe any biotinylation on your protein of interest, see Troubleshooting, page 27.
	After native electrophoresis and Western blotting with streptavidin conjugate, the protein of interest should migrate as a complex on the native gel, indicating the ability to interact with endogenous binding partners. The ability for complex formation may vary between the N- and C-terminally tagged proteins or may be similar.
	The next page shows results of a SDS-PAGE and native electrophoresis experiment and provides guidelines on interpreting your results.
The Next Step	Based on the level of biotinylation for your protein and complex formation, choose the appropriate N-or C-terminal construct for further purification or analysis experiments.
	You should select the construct that provides better biotinylation signal and demonstrates complex formation.

Expected Results

Introduction Examples of results obtained by SDS-PAGE and native gel electrophoresis followed by Western blot detection to confirm biotinylation and native complex formation of a number of N- and C-terminally tagged proteins of interest are shown in this section. N- and C- terminal (NT and CT) tagged expression clones for the following Protein genes were constructed as described in this manual: actin related protein **Biotinylation** complex component p34 (ARPC2), Golgi associated protein (Bet-3), βgalactosidase (LacZ), and human proteosome subunit beta-2 (PSMB2). Freestyle[™]293 cells were transiently transfected using Lipofectamine[™] 2000. At 24 hours post transfection, cells were harvested and lysed using the protocol on page 21. Ten micrograms of post-nuclear supernatant was loaded per well on a 4-12% NuPAGE[®] Novex[®] Bis-Tris gel and electrophoresed. Proteins were transferred to a nitrocellulose membrane (0.45 µm) and subjected to Western detection using streptavidin-alkaline phosphatse conjugate (1:4000) and the WesternBreeze® Chemiluminescent Kit.

1 2 3 4 5 6 7 8

Lane 1: ARPC2 NT, 47.4 kDa Lane 2: ARPC2 CT, 49.4 kDa Lane 3: Bet-3 NT, 32.8 kDa Lane 4: Bet-3 CT, 35.5 kDa Lane 5: LacZ NT, 129 kDa Lane 6: LacZ CT, 131.6 kDa Lane 7: PSMB2 NT, 35.3 kDa Lane 8: PSMB2 CT, 37.9 kDa

MultiMark[™] multicolored protein standard (not shown, see page vii) was used to determine the molecular weights of the N- and C-terminally tagged proteins. The faint band detected in all lanes is endogenous biotinylation from the lysate. The presence of multiple bands in lane 5 represents slight protein degradation.

Results

These results show that the proteins of interest are biotinylated. For some proteins, there is a difference in the level of biotinylation in the N- and C-terminally tagged versions (*e.g.* lane 1 vs. lane 2, lane 3 vs. lane 4, and lane 7 vs. lane 8). However, for LacZ (lane 5 vs. lane 6), both N- and C-terminally tagged constructs have similar levels of biotinylation.

Expected Results, continued

Native Complex Formation

N- and C- terminal (NT and CT) tagged expression clones for the following genes were constructed as described in this manual: actin related protein complex component p34 (ARPC2), human proteosome subunit beta-2 (PSMB2). GripTite[™]293 cells were transiently transfected using Lipofectamine[™] 2000.

At 24 hours post transfection, cells were harvested and lysed using the native protocol on page 21. Ten micrograms of post- nuclear supernatant was loaded per well on a 3-12% NativePAGE[®] Novex Bis-Tris gel and electrophoresed.

Proteins were transferred to Invitrolon[™] PVDF membrane and subjected to Western detection using streptavidin-alkaline phosphatse conjugate (1:4000) and the WesternBreeze[®] Chromogenic Kit. Apparent molecular weights (kDa) are listed on the left, which correspond to NativeMark[™] Unstained Protein Standard.

Lane 1: 5 µl of 1:20 diluted NativeMark[™] Unstained Protein Standard Lane 2: Untransfected cell lysate (negative control) Lane 3: APRC2 CT Lane 4: PSMB CT tagged Lane 5: PSMB NT tagged

Results

These results show that in the case of the human proteasome subunit beta-2 protein (PSMB), the C-terminally tagged protein forms a complex, while the N-terminally tagged protein does not. The 20S proteosome complex (shown by arrow, above) is detected only in lane 4 and not in lane 5 of the streptavidin Western blot. These data also show the size of the protein complex formed. Background bands detected in all lanes may be protein present in the cell lysate with endogenous phosphatase activity, endogenous biotinylation, or nonspecific binding.

Native Protein Analysis

Introduction	You may analyze protein complexes as follows:
	• Analyze the protein complexes directly from cell lysates using SDS-PAGE or native gel electrophoresis and Western immunodetection
	• Purify protein complexes from cell lysates under native conditions using the NativePure [™] Affinity Purification kit (supplied with cat. no. BN3006) and analyze purified protein complexes by SDS-PAGE, native gel electrophoresis or mass spectrometry.
NativePure [™] Affinity Purification Kit	The NativePure [™] Affinity Purification Kit is included with catalog no. BN3006 and is also available separately from Invitrogen (see page vii for ordering information). The NativePure [™] Affinity Purification system is based on the selective binding of Streptavidin Agarose to biotinylated proteins and protein complexes. The lysate is prepared from mammalian cells in Lysis Buffer using a freeze-thaw method. The lysate is centrifuged and NP-40 is added to the post-nuclear supernatant for subsequent protein binding. The biotinylated proteins and protein complexes bind to the Streptavidin Agarose column and impurities are removed by thorough washing with buffers. The bound biotinylated proteins and protein complexes are released from the column by AcTEV [™] Protease treatment. The AcTEV [™] Protease is removed from the eluted fractions and protein complexes are concentrated using NativePure [™] Concentrators. The resulting purified protein complexes are analyzed by native electrophoresis, Western analysis, or mass spectrometry.
	For more information about the NativePure [™] Affinity Purification Kit, refer to the manual, also supplied with cat. no. BN3006. Manuals are also available from www.invitrogen.com or by contacting Technical Service (page 36).
Important Important	For affinity purification of native protein complexes expressed using the NativePure [™] Gateway [®] Vector Kits, use the Streptavidin Agarose included in the NativePure [™] Affinity Purification Kit, or Streptavidin Agarose (cat. no S-951, page vii). Use of other commercially available streptavidin agarose may not provide optimal binding and recovery of protein complexes.
NativePAGE [™] Gels	The NativePAGE [™] Novex Bis-Tris Gel system is a near neutral pH, pre-cast polyacrylamide mini gel system to perform native (non-denaturing) electrophoresis. The NativePAGE [™] Novex Bis-Tris Gel system provides a sensitive and high-resolution method for analysis of native membrane protein complexes, native soluble proteins, molecular mass estimations, and determining the purityof native proteins.
	For more information about the NativePAGE [™] Gels see page vii or go to www.invitrogen.com.

Troubleshooting

Introduction	The following sections list potential problems and solutions for problems you may encounter in your experiments. For more information to troubleshoot affinity purification, refer to the NativePure [™] Affinity Purification manual (supplied with cat. no BN3006 or available at www.invitrogen.com or by contacting Technical Service).
	8

LR Recombination Reaction The table below lists some potential problems and solutions for troubleshooting your LR recombination reactions. For more information on troubleshooting within the Gateway[®] system, refer to the Gateway[®] Technology with Clonase[™] II manual, which is available from www.invitrogen.com or by contacting Technical Service.

Problem	Possible Cause	Solution	
Few or no colonies obtained from sample	Incorrect antibiotic used to select for transformants	Use ampicillin (100 μ g/ml) to select for clones.	
reaction	Recombinant reactions were not treated with Proteinase K	Treat reactions with Proteinase K before transformation.	
High background in the absence of entry clone	LR reaction transformed into an <i>E. coli</i> strain containing the F' episome and the <i>ccd</i> A gene	Use an <i>E. coli</i> strain that does not contain the F' episome for transformation.	
	Deletion of the <i>ccd</i> B gene from the destination vector	 To maintain the integrity of the vector, propagate in media containing ampicillin and 15-30 µg chloramphenicol. Prepare plasmid DNA from one or more colonies and verify the 	
	Contamination of solution(s) with another plasmid with amp resistance, or by bacteria carrying a resistance plasmid	 integrity of the vector before use. Test for plasmid contamination by transforming <i>E. coli</i> with aliquots of each of the separate solutions used in the LR reaction. Test for bacterial contamination by plating an aliquot of each solution directly onto LB amp plates. 	

Troubleshooting, continued

Protein Expression

The table below lists some potential problems and solutions for troubleshooting protein expression from your pcDNA^M3.2/capTEV^M expression construct.

Problem	Possible Cause	Solution
Recombinant protein not expressed from either pcDNA [™] 3.2/capTEV [™] expression clone	Poor transfection efficiency	 Make sure your cells are healthy prior to transfection. Optimize transfection conditions for the method you are using. Use Lipofectamine[™] 2000 for transfecting your cells (see page 17).
	Incorrect detection method	Use streptavidin conjugated to alkaline phosphatase or horseradish peroxidase (page vii) followed by Western detection method of choice.
	Gene of interest not in frame with capTEV [™] Tag	Make sure that the gene of interest is in frame with the capTEV [™] Tag as shown on pages 11-12.
Recombinant protein not expressed from pcDNA [™] 3.2/capTEV [™] -CT expression clone	No Kozak consensus sequence added to C-terminal fusion	Make sure a Kozak consensus sequence is present in your entry clone design (see page 9).
	Stop codon inserted	Make sure no stop codon is at the end of your gene (see page 9).
	Gene of interest not in frame with capTEV [™] Tag	Make sure that the gene of interest is in frame with the capTEV [™] Tag as shown on pages 11-12.

Troubleshooting, continued

Protein Biotinylation and Complex Formation

The table below lists some potential problems and solutions for troubleshooting biotinylation and complex formation from your pcDNATM3.2/capTEVTM expression construct.

Incorrect detection method Protein not expressed	Use streptavidin conjugated to alkaline phosphatase or horseradish peroxidase followed by Western detection as described (page 19). Use antibodies to the V5 epitope (page vii) followed by western detection to	
Protein not expressed	Use antibodies to the V5 epitope (page	
	ensure that protein is expressed.	
Gene of interest not in frame with capTEV [™] Tag	Make sure that the gene of interest is in frame with the capTEV [™] Tag as shown on pages 11-12.	
N- or C-terminal tag interfering with complex formation	Test both N- and C-terminal tagged constructs to determine optimal complet formation (page 18).	
Complexes dissociated during lysate preparation	To avoid dissociation of protein complexes:	
	• Perform cell lysis using freeze-thaw cycles. Avoid trypsinizing the cells or scraping the cells.	
	• Perform cell lysis in the absence of NP40 as some protein complexes maybe unstable in the presence of NP40.	
	 Avoid vortexing the lysate during lysate preparation. 	
	Perform all purification steps at 4°C and use chilled buffers.	
Complexes unable to form in mammalian cell line of choice	Optimize using another mammalian cell line	
Protein degraded	 Perform all purification steps at 4°C. Check to make sure that the BioEase[™]-tag is not cleaved during processing or purification. Include protease inhibitors during 	
	Gene of interest not in frame with capTEV [™] Tag N- or C-terminal tag interfering with complex formation Complexes dissociated during lysate preparation Complexes unable to form in mammalian cell line of choice Protein degraded	

Appendix

Creating Stable Cell Lines

Introduction	The pcDNA [™] 3.2/capTEV [™] /V5-DEST vectors contain the neomycin resistance gene to allow selection of stable cell lines. If you wish to create stable cell lines, transfect your expression construct into the mammalian cell line of choice and select for stable transfectants using Geneticin [®] . General information and guidelines are provided below.
Q Important	It is not necessary to create stable cell lines for purification or analysis of complexes. If you wish to create stable cell lines, make sure to assay clones for expression of biotinylated protein and complex formation (page 18), and expand those clones.
Linearizing the Plasmid	To obtain stable transfectants, we recommend that you linearize your pcDNA ^{TM} 3.2/capTEV ^{TM} -N or CT expression construct before transfection. While linearizing the vector may not improve the efficiency of transfection, it increases the chances that the vector does not integrate in a way that disrupts elements necessary for expression in mammalian cells. Cut at a unique site that is not located within a critical element or within your gene of interest. Restriction site information for plasmid vectors is available at www.invitrogen.com.
Geneticin [®]	Geneticin [®] blocks protein synthesis in mammalian cells by interfering with ribosomal function. It is an aminoglycoside, similar in structure to neomycin, gentamycin, and kanamycin. Expression in mammalian cells of the bacterial aminoglycoside phosphotransferase gene (APH), derived from Tn5, results in detoxification of Geneticin [®] (Southern and Berg, 1982).
Determining Geneticin [®] Sensitivity	To successfully generate a stable cell line expressing your protein of interest, you need to determine the minimum concentration of Geneticin [®] required to kill your untransfected host cell line. Test a range of concentrations (see protocol below) to ensure that you determine the minimum concentration necessary for your cell line.
	1. Plate or split a confluent plate so the cells will be approximately 25% confluent. Prepare a set of 6-7 plates. Add the following concentrations of antibiotic to each plate: 0, 50, 125, 250, 500, 750, and 1000 ug/ml Geneticin [®] .
	 Replenish the selective media every 3-4 days, and observe the percentage of surviving cells.
	3. Count the number of viable cells at regular intervals to determine the appropriate concentration of antibiotic that prevents growth within 1-3 weeks after addition of the antibiotic.
	Continued on nort noo

Creating Stable Cell Lines, continued

Geneticin [®] Selection Guidelines	Once you have determined the appropriate Geneticin [®] concentration to use for selection, you can generate a stable cell line expressing your construct. Geneticin [®] is available separately from Invitrogen (see page vii). Use as follows:		
	1. Prepare Geneticin [®] in a buffered solution (<i>e.g.</i> 100 mM HEPES, pH 7.3).		
	2. Use the predetermined concentration of Geneticin [®] in complete medium.		
	3. Calculate concentration based on the amount of active drug.		
	4. Cells will divide once or twice in the presence of lethal doses of Geneticin [®] , so the effects of the drug take several days to become apparent. Complete selection can take from 2 to 3 weeks of growth in selective medium.		
Generating Stable Cell Lines	Once you have determined the appropriate Geneticin [®] concentration to use for selection, you can generate a stable cell line expressing your expression construct.		
	 Transfect the mammalian cell line of interest with the pcDNA[™] 3.2/capTEV[™] expression construct using your transfection method of choice. 		
	2. 24 hours after transfection, wash the cells and add fresh growth medium without Geneticin [®] .		
	3. 48 hours after transfection, split the cells into fresh growth medium without Geneticin [®] such that they are no more than 25% confluent. If the cells are too dense, the antibiotic will not kill the cells. Antibiotics work best on actively dividing cells.		
	4. Incubate the cells at 37°C for 2-3 hours until they have attached to the culture dish.		
	 Remove the growth medium and replace with fresh growth medium containing Geneticin[®] at the predetermined concentration required for your cell line. 		
	 Feed the cells with selective media every 3-4 days until Geneticin[®]-resistant colonies can be identified. 		
	7. Pick at least 3-4 Geneticin [®] -resistant colonies and expand them in culture		
	8. Analyze clones as described on page 18 for biotinylation of recombinant protein and complex formation. Select clones that exhibit biotinylation and complex formation for further experiments.		

Map

The map below shows the elements of the pcDNA[™]3.2/capTEV[™]-NT/V5-DEST vector (7921 bp). DNA from the entry clone replaces the region between bases 1212 and 3457 after performing the LR reaction. The complete sequence of this vector is available for downloading from www.invitrogen.com or by contacting Technical Service (page 36).

(c) = complementary strand

Map and Features of pcDNA[™]3.2/capTEV[™]-NT/V5-DEST

Features

The pcDNA[™]3.2/capTEV[™]-NT/V5-DEST vector contains the following elements. Features have been functionally tested and the vector has been fully sequenced.

Feature	Benefit
Human cytomegalovirus (CMV) immediate-early promoter/enhancer	Allows efficient, high-level expression of your recombinant protein (Andersson <i>et al.</i> , 1989; Boshart <i>et al.</i> , 1985; Nelson <i>et al.</i> , 1987)
CMV forward primer binding site	Allows sequencing of the insert
capTEV [™] Tag: BioEase [™] tag TEV cleavage sites 6XHis tag	Allows <i>in vivo</i> biotinylation and affinity purification of recombinant proteins and associated complexes
attR1 and attR2 sites	Allows recombinatorial cloning of the gene of interest from an entry clone
<i>ccd</i> B gene	Allows negative selection of plasmid
Chloramphenicol resistance gene	Allows counterscreening of plasmid
V5 epitope	Allows detection of recombinant fusion protein with Anti- V5 antibodies (Southern <i>et al.,</i> 1991)
Herpes Simplex Virus Thymidine Kinase (TK) polyadenylation signal	Allows efficient transcription termination and polyadenylation of mRNA (Cole and Stacy, 1985)
f1 origin	Allows rescue of single-stranded DNA
SV40 early promoter and origin	Allows efficient, high-level expression of the neomycin resistance gene and episomal replication in cells expressing the SV40 large T antigen
Neomycin resistance gene	Allows selection of stable transfectants in mammalian cells (Southern and Berg, 1982)
SV40 early polyadenylation signal	Allows efficient transcription termination and polyadenylation of mRNA
pUC origin	Allows high-copy number replication and growth in <i>E. coli</i>
Ampicillin (<i>bla</i>) resistance gene (β-lactamase)	Allows selection of transformants in <i>E. coli</i>

Map

The map below shows the elements of the pcDNA[™]3.2/capTEV[™]-CT/V5-DEST vector (8010 bp). DNA from the entry clone replaces the region between bases 882 and 3127 after performing the LR reaction **The complete sequence of this vector is available for downloading from www.invitrogen.com or by contacting Technical Service (page 36).**

(c) = complementary strand

Map and Features of pcDNA[™]3.2/capTEV[™]-CT/V5-DEST

Features

The pcDNA[™]3.2/capTEV[™]-CT/V5-DEST vector contains the following elements. Features have been functionally tested and the vector has been fully sequenced.

Feature	Benefit
Human cytomegalovirus (CMV) immediate-early promoter/enhancer	Allows efficient, high-level expression of your recombinant protein (Andersson <i>et al.</i> , 1989; Boshart <i>et al.</i> , 1985; Nelson <i>et al.</i> , 1987)
<i>att</i> R1 and <i>att</i> R2 sites	Allows recombinatorial cloning of the gene of interest from an entry clone
<i>ccd</i> B gene	Allows negative selection of plasmid
Chloramphenicol resistance gene	Allows counterscreening of plasmid
V5 epitope	Allows detection of recombinant fusion protein with Anti- V5 antibodies (Southern <i>et al.,</i> 1991)
capTEV [™] Tag: BioEase [™] tag TEV cleavage sites 6XHis tag	Allows <i>in vivo</i> biotinylation and affinity purification of recombinant proteins and associated complexes
V5 (C-term) reverse primer binding site	Allows sequencing of the insert
TK polyA reverse primer binding site	Allows sequencing of the insert
Herpes Simplex Virus Thymidine Kinase (TK) polyadenylation signal	Allows efficient transcription termination and polyadenylation of mRNA (Cole and Stacy, 1985)
f1 origin	Allows rescue of single-stranded DNA
SV40 early promoter and origin	Allows efficient, high-level expression of the neomycin resistance gene and episomal replication in cells expressing the SV40 large T antigen
Neomycin resistance gene	Allows selection of stable transfectants in mammalian cells (Southern and Berg, 1982)
SV40 early polyadenylation signal	Allows efficient transcription termination and polyadenylation of mRNA
pUC origin	Allows high-copy number replication and growth in <i>E. coli</i>
Ampicillin (<i>bla</i>) resistance gene (β-lactamase)	Allows selection of transformants in <i>E. coli</i>

Map of pcDNA[™]3.2/capTEV[™]-NT-GW/ARPC2

Мар

The map below shows the elements of the pcDNATM3.2/capTEVTM-NT-GW/ARPC2 vector (6643 bp). The plasmid was generated by performing an LR recombination reaction between an entry vector containing the *ARPC2* gene and the pcDNATM3.2/capTEVTM-NT/V5-DEST vector. **The complete sequence of this vector is available for downloading from www.invitrogen.com or by contacting Technical Service (page 36).**

(c) = complementary strand

Technical Service

Web Resources

Visit the Invitrogen Web site at **www.invitrogen.com** for:

- Technical resources, including manuals, vector maps and sequences, application notes, MSDSs, FAQs, formulations, citations, handbooks, etc.
- Complete technical service contact information

Access to the Invitrogen Online Catalog

Additional product information and special offers

Contact Us

For more information or technical assistance, call, write, fax, or email. Additional international offices are listed on our Web page (www.invitrogen.com).

Corporate Headquarters: Invitrogen Corporation 1600 Faraday Avenue Carlsbad, CA 92008 USA Tel: 1 760 603 7200 Tel (Toll Free): 1 800 955 6288 Fax: 1 760 602 6500 E-mail: tech_service@invitrogen.com		Japanese Headquarters: Invitrogen Japan LOOP-X Bldg. 6F 3-9-15, Kaigan Minato-ku, Tokyo 108-0022 Tel: 81 3 5730 6509 Fax: 81 3 5730 6519 E-mail: jpinfo@invitrogen.com	European Headquarters: Invitrogen Ltd Inchinnan Business Park 3 Fountain Drive Paisley PA4 9RF, UK Tel: +44 (0) 141 814 6100 Tech Fax: +44 (0) 141 814 6117 E-mail: eurotech@invitrogen.com
Material Data Safety Sheets (MSDSs)	MSDSs are av page, click on download the	ailable on our Web site at www.i Technical Resources and follow MSDS for your product.	nvitrogen.com. On the home instructions on the page to
Limited Warranty	Invitrogen is committed to providing our customers with high-quality goods and services. Our goal is to ensure that every customer is 100% satisfied with our products and our service. If you should have any questions or concerns about an Invitrogen product or service, contact our Technical Service Representatives. Invitrogen warrants that all of its products will perform according to specifications stated on the certificate of analysis. The company will replace, free of charge, any product that does not meet those specifications. <u>This warranty</u> <u>limits Invitrogen Corporation's liability only to the cost of the product</u> . No warranty is granted for products beyond their listed expiration date. No warranty is applicable unless all product components are stored in accordance with instructions. Invitrogen reserves the right to select the method(s) used to analyze a product unless Invitrogen agrees to a specified method in writing prior to acceptance of the order. Invitrogen makes every effort to ensure the accuracy of its publications, but realizes that the occasional typographical or other error is inevitable. Therefore Invitrogen makes no warranty of any kind regarding the contents of any publications or documentation. If you discover an error in any of our publications, please report it to our Technical Service Representatives. Invitrogen assumes no responsibility or liability for any special, incidental, indirect or consequential loss or damage whatsoever. The above limited warranty is sole and exclusive. No other warranty is made, whether expressed or implied, including any warranty of merchantability or fitness for a particular purpose.		

Purchaser Notification

Introduction

Use of the pcDNA[™]3.2/capTEV[™]-NT and CT/V5-DEST vectors are covered under the licenses detailed below

Limited Use Label License No. 5: Invitrogen Technology

Limited Use Label

Gateway[®] Cloning

License No. 19:

Products

The purchase of this product conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product in research conducted by the buyer (whether the buyer is an academic or for-profit entity). The buyer cannot sell or otherwise transfer (a) this product (b) its components or (c) materials made using this product or its components to a third party or otherwise use this product or its components or materials made using this product or its components for Commercial Purposes. The buyer may transfer information or materials made through the use of this product to a scientific collaborator, provided that such transfer is not for any Commercial Purpose, and that such collaborator agrees in writing (a) not to transfer such materials to any third party, and (b) to use such transferred materials and/or information solely for research and not for Commercial Purposes. Commercial Purposes means any activity by a party for consideration and may include, but is not limited to: (1) use of the product or its components in manufacturing; (2) use of the product or its components to provide a service, information, or data; (3) use of the product or its components for therapeutic, diagnostic or prophylactic purposes; or (4) resale of the product or its components, whether or not such product or its components are resold for use in research. For products that are subject to multiple limited use label licenses, the terms of the most restrictive limited use label license shall control. Life Technologies Corporation will not assert a claim against the buyer of infringement of patents owned or controlled by Life Technologies Corporation which cover this product based upon the manufacture, use or sale of a therapeutic, clinical diagnostic, vaccine or prophylactic product developed in research by the buyer in which this product or its components was employed, provided that neither this product nor any of its components was used in the manufacture of such product. If the purchaser is not willing to accept the limitations of this limited use statement, Life Technologies is willing to accept return of the product with a full refund. For information about purchasing a license to use this product or the technology embedded in it for any use other than for research use please contact Out Licensing, Life Technologies, 5791 Van Allen Way, Carlsbad, California 92008; Phone (760) 603-7200 or e-mail: outlicensing@lifetech.com.

The purchase of this product conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product in research conducted by the buyer (whether the buyer is an academic or for profit entity). The purchase of this product does not convey a license under any method claims in the foregoing patents or patent applications, or to use this product with any recombination sites other than those purchased from Life Technologies Corporation or its authorized distributor. The right to use methods claimed in the foregoing patents or patent applications with this product for research purposes only can only be acquired by the use of ClonaseTM purchased from Life Technologies Corporation or its authorized distributors. The buyer cannot modify the recombination sequence(s) contained in this product for any purpose. The buyer cannot sell or otherwise transfer (a) this product, (b) its components, or (c) materials made by the employment of this product or its components to a third party or otherwise use this product or its components or materials made by the employment of this product or its components for Commercial Purposes. The buyer may transfer information or materials made through the employment of this product to a scientific collaborator, provided that such transfer is not for any Commercial Purpose, and that such collaborator agrees in writing (a) not to transfer such materials to any third party, and (b) to use such transferred materials and/or information solely for research and not for Commercial Purposes. Notwithstanding the preceding, any buyer who is employed in an academic or government institution may transfer materials made with this product to a third party who has a license from Life Technologies under the patents identified above to distribute such materials. Transfer of such materials and/or information to collaborators does not convey rights to practice any methods claimed in the foregoing patents or patent applications. Commercial Purposes means any activity by a party for consideration and may include, but is not limited to: (1) use of the product or its components in manufacturing; (2) use of the product or its components to provide a service, information, or data; (3) use of the product or its components for therapeutic, diagnostic or prophylactic purposes; or (4) resale of the product or its components, whether or not such product or its components are resold for use in research. Life Technologies Corporation will not assert a claim against the buyer of infringement of the above patents based upon the manufacture, use or sale of a therapeutic, clinical diagnostic, vaccine or prophylactic product developed in research by the buyer in which this product or its components was employed, provided that none of (i) this product, (ii) any of its components, or (iii) a method claim of the foregoing patents, was used in the manufacture of such product.

Purchaser Notification, continued

Limited Use Label License No. 19: Gateway [®] Cloning Products, continued	Life Technologies Corporation will not assert a claim against the buyer of infringement of the above patents based upon the use of this product to manufacture a protein for sale, provided that no method claim in the above patents was used in the manufacture of such protein. If the purchaser is not willing to accept the limitations of this limited use statement, Life Technologies is willing to accept return of the product with a full refund. For information on purchasing a license to use this product for purposes other than those permitted above, contact Licensing Department, Life Technologies Corporation, 5791 Van Allen Way, Carlsbad, California 92008. Phone (760) 603-7200.
Gateway [®] Clone Distribution Policy	For additional information about Invitrogen's policy for the use and distribution of Gateway [®] clones, see the section entitled Gateway[®] Clone Distribution Policy on page 40.
Limited Use Label License No. 22: Vectors and Clones Encoding Histidine Hexamer	This product is licensed under U.S. Patent Nos. 5,284,933 and 5,310,663 and foreign equivalents from Hoffmann-LaRoche, Inc., Nutley, NJ and/or Hoffmann-LaRoche Ltd., Basel, Switzerland and is provided only for use in research. Information about licenses for commercial use is available from QIAGEN GmbH, Max-Volmer-Str. 4, D-40724 Hilden, Germany.
Limited Use Label License No. 135: Recombinant TEV Protease	This product is licensed under U.S. Patent No. 5,532,142.
Limited Use Label License No. 163: Enhanced TEV Protease	The purchase of this product conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product in research conducted by the buyer (whether the buyer is an academic or for-profit entity). The buyer cannot sell or otherwise transfer (a) this product (b) its components or (c) materials made using this product or its components to a third party or otherwise use this product or its components or materials made using this product or its components for Commercial Purposes. The buyer may transfer information or materials made through the use of this product to a scientific collaborator, provided that such transfer is not for any Commercial Purpose, and that such collaborator agrees in writing (a) not to transfer such materials to any third party, and (b) to use such transferred materials and/or information solely for research and not for Commercial Purposes. Commercial Purposes means any activity by a party for consideration and may include, but is not limited to: (1) use of the product or its components in manufacturing; (2) use of the product or its components to provide a service, information, or data; (3) use of the product or its components for therapeutic, diagnostic or prophylactic purposes; or (4) resale of the product or its components, whether or not such product or its components was employed, provided that neither this product nor any of its components was used in the manufacture, use or sale of a therapeutic, clinical diagnostic, vaccine or prophylactic product product developed in research by the buyer in which this product or its components was employed, provided that neither this product or any of its components was used in the manufacture of such product. If the purchaser is not willing to accept return of the product or its components was employed, provided that neither this product or any of its components was used in the manufacture or purchasing a license to this product for purposes other than research, contact Licensing Department, Life Techn

Gateway[®] Clone Distribution Policy

Introduction	The information supplied in this section is intended to provide clarity concerning Invitrogen's policy for the use and distribution of cloned nucleic acid fragments, including open reading frames, created using Invitrogen's commercially available Gateway [®] Technology.
Gateway [®] Entry Clones	Invitrogen understands that Gateway [®] entry clones, containing <i>att</i> L1 and <i>att</i> L2 sites, may be generated by academic and government researchers for the purpose of scientific research. Invitrogen agrees that such clones may be distributed for scientific research by non-profit organizations and by for-profit organizations without royalty payment to Invitrogen.
Gateway [®] Expression Clones	Invitrogen also understands that Gateway [®] expression clones, containing <i>att</i> B1 and <i>att</i> B2 sites, may be generated by academic and government researchers for the purpose of scientific research. Invitrogen agrees that such clones may be distributed for scientific research by academic and government organizations without royalty payment to Invitrogen. Organizations other than academia and government may also distribute such Gateway [®] expression clones for a nominal fee (\$10 per clone) payable to Invitrogen.
Additional Terms and Conditions	We would ask that such distributors of Gateway [®] entry and expression clones indicate that such clones may be used only for research purposes, that such clones incorporate the Gateway [®] Technology, and that the purchase of Gateway [®] Clonase [™] from Invitrogen is required for carrying out the Gateway [®] recombinational cloning reaction. This should allow researchers to readily identify Gateway [®] containing clones and facilitate their use of this powerful technology in their research. Use of Invitrogen's Gateway [®] Technology, including Gateway [®] clones, for purposes other than scientific research may require a license and questions concerning such commercial use should be directed to Invitrogen's licensing department at 760-603-7200.

Product Qualification

Vectors	The pcDNA ^{TM} 3.2/capTEV ^{TM} Gateway [®] destination vectors as well as the corresponding control plasmid are qualified by restriction endonuclease digestion. pcDNA ^{TM} 3.2/capTEV ^{TM} -NT/V5-DEST and pcDNA ^{TM} 3.2/capTEV ^{TM} -CT/V5-DEST are further qualified in a recombination assay using Gateway [®] LR Clonase ^{TM} II enzyme mix. The <i>ccd</i> B gene is assayed by transformation using an appropriate <i>E. coli</i> strain.
NativePure™ Affinity Purification Reagents	For details on the qualification of NativePure [™] Affinity Purification reagents, refer to the NativePure [™] Affinity Purification Kit manual.

Andersson, S., Davis, D. L., Dahlbäck, H., Jörnvall, H., and Russell, D. W. (1989). Cloning, Structure, and Expression of the Mitochondrial Cytochrome P-450 Sterol 26-Hydroxylase, a Bile Acid Biosynthetic Enzyme. J. Biol. Chem. 264, 8222-8229.

Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (1994). Current Protocols in Molecular Biology (New York: Greene Publishing Associates and Wiley-Interscience).

Boshart, M., Weber, F., Jahn, G., Dorsch-Häsler, K., Fleckenstein, B., and Schaffner, W. (1985). A Very Strong Enhancer is Located Upstream of an Immediate Early Gene of Human Cytomegalovirus. Cell *41*, 521-530.

Chapman-Smith, A., and J.E. Cronan, J. (1999). Molecular Biology of Biotin Attachment to Proteins. J. Nutr. 129, 477S-484S.

Chen, C., and Okayama, H. (1987). High-Efficiency Transformation of Mammalian Cells by Plasmid DNA. Mol. Cell. Biol. 7, 2745-2752.

Chu, G., Hayakawa, H., and Berg, P. (1987). Electroporation for the Efficient Transfection of Mammalian Cells with DNA. Nucleic Acids Res. *15*, 1311-1326.

Ciccarone, V., Chu, Y., Schifferli, K., Pichet, J.-P., Hawley-Nelson, P., Evans, K., Roy, L., and Bennett, S. (1999). Lipofectamine[™] 2000 Reagent for Rapid, Efficient Transfection of Eukaryotic Cells. Focus 21, 54-55.

Cole, C. N., and Stacy, T. P. (1985). Identification of Sequences in the Herpes Simplex Virus Thymidine Kinase Gene Required for Efficient Processing and Polyadenylation. Mol. Cell. Biol. *5*, 2104-2113.

Felgner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., Northrop, J. P., Ringold, G. M., and Danielsen, M. (1987). Lipofectin: A Highly Efficient, Lipid-mediated DNA-transfection Procedure. Proc. Natl. Acad. Sci. USA *84*, 7413-7417.

Felgner, P. L., Holm, M., and Chan, H. (1989). Cationic Liposome Mediated Transfection. Proc. West. Pharmacol. Soc. 32, 115-121.

Felgner, P. L. a., and Ringold, G. M. (1989). Cationic Liposome-Mediated Transfection. Nature 337, 387-388.

Kozak, M. (1987). An Analysis of 5´-Noncoding Sequences from 699 Vertebrate Messenger RNAs. Nucleic Acids Res. 15, 8125-8148.

Kozak, M. (1991). An Analysis of Vertebrate mRNA Sequences: Intimations of Translational Control. J. Cell Biology *115*, 887-903.

Kozak, M. (1990). Downstream Secondary Structure Facilitates Recognition of Initiator Codons by Eukaryotic Ribosomes. Proc. Natl. Acad. Sci. USA *87*, 8301-8305.

Landy, A. (1989). Dynamic, Structural, and Regulatory Aspects of Lambda Site-specific Recombination. Ann. Rev. Biochem. *58*, 913-949.

References, continued

Nayak, S., Li, L., and Lee, J. (2003). Enhanced TEV Protease Extends Enzyme Stability for Long-Term Activity. Focus 25.3, 12-14.

Nelson, J. A., Reynolds-Kohler, C., and Smith, B. A. (1987). Negative and Positive Regulation by a Short Segment in the 5'-Flanking Region of the Human Cytomegalovirus Major Immediate-Early Gene. Molec. Cell. Biol. *7*, 4125-4129.

Puig, O., Caspary, F., Rigaut, G., Rutz, B., Bouveret, E., Brigado-Nilsson, E., Wilm, M., and Seraphin, B. (2001). The tandem affinity purification method: a general procedure of protein complex purification. Methods *24*, 218-229.

Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and Seraphin, B. (1999). A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. *17*, 1030-1032.

Robinson, R., Turbedsky, K., Kaiser, D., Marchand, J. B., Higgs, H. N., Choe, S., and Pollard, T. D. (2001). Crystal Structure of ARP2/3 Comples. Science 294, 1679-1684.

Schwarz, E., Oesterhelt, D., Reinke, H., Beyreuther, K., and Dimroth, P. (1988). The Sodium Ion Translocating Oxalacetate Decarboxylase of *Klebsiella pneumoniae*. J. Biol. Chem. 263, 9640-9645.

Shigekawa, K., and Dower, W. J. (1988). Electroporation of Eukaryotes and Prokaryotes: A General Approach to the Introduction of Macromolecules into Cells. BioTechniques *6*, 742-751.

Southern, J. A., Young, D. F., Heaney, F., Baumgartner, W., and Randall, R. E. (1991). Identification of an Epitope on the P and V Proteins of Simian Virus 5 That Distinguishes Between Two Isolates with Different Biological Characteristics. J. Gen. Virol. *72*, 1551-1557.

Southern, P. J., and Berg, P. (1982). Transformation of Mammalian Cells to Antibiotic Resistance with a Bacterial Gene Under Control of the SV40 Early Region Promoter. J. Molec. Appl. Gen. 1, 327-339.

Wigler, M., Silverstein, S., Lee, L.-S., Pellicer, A., Cheng, Y.-C., and Axel, R. (1977). Transfer of Purified Herpes Virus Thymidine Kinase Gene to Cultured Mouse Cells. Cell *11*, 223-232.

©2006, 2010 Invitrogen Corporation. All rights reserved.

For research use only. Not intended for any animal or human therapeutic or diagnostic use.

invitrogen®

Corporate Headquarters Invitrogen Corporation 1600 Faraday Avenue Carlsbad, CA 92008 T: 1 760 603 7200 F: 1 760 602 6500 E: tech.service@invitrogen.com

For country-specific contact information visit our web site at **www.invitrogen.com**