

Instruction Manual

pYES-DEST52 Gateway[™] Vector

A destination vector for cloning and inducible expression in *Saccharomyces cerevisiae*

Catalog no. 12286-019

Version D Novemer 20, 2002 25-0415

A Limited Label License covers this product (see Purchaser Notification). By use of this product, you accept the terms and conditions of the Limited Label License.

Table of Contents

Table of Contents	iii
Important Information	v
Accessory Products	vi
Methods	1
Overview	1
Using pYES-DEST52	3
Yeast Transformation	6
Expressing the Gene of Interest	8
Analyzing Samples	11
Purification	13
Appendix	14
Recipes	14
Small-Scale Yeast Transformation	19
Preparing Denatured Salmon Sperm DNA	21
Map and Features of pYES-DEST52	22
Technical Service	24
Purchaser Notification	26
References	

Important Information

Shipping and Storage	pYES-DEST52 is shipped at room temperature. Upon receipt, store at -20°C. Products are guaranteed for six months from date of shipment when stored properly.
Contents	6 μg pYES-DEST52, lyophilized in TE, pH 8.0
Quality Control	pYES-DEST52 is qualified by restriction endonuclease digestion. pYES-DEST52 is further qualified in a recombination assay using Gateway [®] LR Clonase [™] enzyme mix. The <i>ccd</i> B gene is assayed by transformation using an appropriate <i>E. coli</i> strain.

Accessory Products

Additional Products

Additional products that may be used with pYES-DEST52 are available from Invitrogen. Ordering information is provided below.

Product	Amount	Catalog no.
Gateway [®] LR Clonase [™] Enzyme Mix	20 reactions	11791-019
One Shot [®] TOP10 Chemically Competent Cells	10 reactions	C4040-10
	20 reactions	C4040-03
One Shot [®] TOP10 Electrocompetent Cells	10 reactions	C4040-50
	20 reactions	C4040-52
INVSc1	1 stab	C810-00
S.c. EasyComp [™] Kit	20 reactions	K5050-01

Detection of
RecombinantExpression of your recombinant fusion protein can be
detected using an antibody to the appropriate epitope.
Horseradish peroxidase (HRP) or alkaline phosphatase (AP)-
conjugated antibodies allow one-step detection using
colorimetric or chemiluminescent detection methods. The

amount of antibody supplied is sufficient for 25 Westerns.

Product Epitope Catalog no. Anti-V5 Antibody Detects 14 amino acid epitope R960-25 derived from the P and V Anti-V5-HRP Antibody R961-25 proteins of the paramyxovirus, Anti-V5-AP Antibody SV5 (Southern et al., 1991). R962-25 GKPIPNPLLGLDST Anti-His (C-term) Antibody Detects the C-terminal R930-25 polyhistidine (6xHis) tag (requires the free carboxyl group Anti-His(C-term)-HRP R931-25 for detection (Lindner *et al.*, 1997) Antibody НННННН-СООН Anti-His(C-term)-AP R932-25 Antibody

Accessory Products, continued

Purification of Recombinant Fusion Protein

If your gene of interest is in frame with the C-terminal peptide containing the V5 epitope and the polyhistidine (6xHis) tag, you may use Immobilized Metal Affinity Chromatography (IMAC) to purify your recombinant fusion protein. The ProBond[™] Purification System or bulk ProBond[™] resin are available separately from Invitrogen. See the table below for ordering information.

Product	Quantity	Catalog no.
ProBond [™] Nickel-chelating Resin	50 ml	R801-01
	150 ml	R801-15
ProBond [™] Purification System	6 purifications	K850-01
ProBond [™] Purification System	1 kit	K853-01
with Anti-His(C-term)-HRP Antibody		
ProBond [™] Purification System	1 kit	K854-01
with Anti-V5-HRP Antibody		
Purification Columns	50	R640-50
(10 ml polypropylene columns)		

Methods

Overview

Description	pYES-DEST52 is a 7.6 kb vector derived from pYES2/CT and adapted for use with the Gateway [®] Cloning Technology. It is designed for high-level, galactose- inducible expression in <i>Saccharomyces cerevisiae</i> . For more information on Gateway [®] Cloning, see the next page.
Features	pYES-DEST52 contains the following elements:
	• Yeast <i>GAL1</i> promoter for high-level, galactose-inducible protein expression in <i>Saccharomyces cerevisiae</i>
	• Two recombination sites, <i>att</i> R1 and <i>att</i> R2, downstream of the <i>GAL1</i> promoter for recombinational cloning of the gene of interest from an entry clone
	• Chloramphenicol resistance gene located between the two <i>att</i> R sites for counterselection
	• The <i>ccd</i> B gene located between the two <i>att</i> R sites for negative selection
	• The V5 epitope and 6xHis tag for detection and purification (optional)
	• Cytochrome c (<i>CYC1</i>) polyadenylation sequence for proper termination and processing of the recombinant transcript
	 2μ origin for episomal maintenance and high copy replication
	• <i>URA3</i> auxotrophic marker for selection of yeast transformants
	• The pUC origin for high copy replication and maintenance of the plasmid in <i>E. coli</i>
	• The ampicillin (<i>bla</i>) resistance gene for selection in <i>E. coli</i>
	• f1 intergenic region for production of single-strand DNA in F plasmid-containing <i>E. coli</i>
	For a map of pYES-DEST52, see page 22.

Overview, continued

The Gateway[®] Technology

Gateway[®] is a universal cloning technology that takes advantage of the site-specific recombination properties of bacteriophage lambda (Landy, 1989) to provide a rapid and highly efficient way to move your gene of interest into multiple vector systems. To express your gene of interest using Gateway[®] Technology, simply:

- 1. Clone your gene of interest into a Gateway[®] entry vector to create an entry clone.
- 2. Generate an expression clone by performing an LR recombination reaction between the entry clone and a Gateway[®] destination vector (*e.g.* pYES-DEST52).
- 3. Transform your expression clone into *Saccharomyces cerevisiae* and assay for expression of your gene of interest.

For more information on the Gateway[®] System, refer to the Gateway[®] Technology Manual. This manual is available for downloading from our Web site (www.invitrogen.com) or by contacting Technical Service (page 24).

Using pYES-DEST52

Important	The pYES-DEST52 vector is supplied as a supercoiled plasmid. Although Invitrogen has previously recommended using a linearized destination vector for more efficient recombination, further testing has found that linearization of this vector is NOT required to obtain optimal results for any downstream application.
Propagating pYES-DEST52	If you wish to propagate and maintain pYES-DEST52, we recommend using Library Efficiency [®] DB3.1 TM Competent Cells (Catalog no. 11782-018) from Invitrogen for transformation. The DB3.1 TM <i>E. coli</i> strain is resistant to CcdB effects and can support the propagation of plasmids containing the <i>ccd</i> B gene.
	Note: DO NOT use general <i>E. coli</i> cloning strains including TOP10 or DH5 α for propagation and maintenance as these strains are sensitive to CcdB effects.
Entry Clone	To recombine your gene of interest into pYES-DEST52, you should have an entry clone containing your gene of interest. For your convenience, Invitrogen offers the pENTR Directional TOPO® Cloning Kit (Catalog no. K2400-20) for highly efficient, 5-minute cloning of your gene of interest into an entry vector. For more information on entry vectors available from Invitrogen, refer to our Web site (www.invitrogen.com) or contact Technical Service (page 24).
	For detailed information on constructing an entry clone, refer to the specific entry vector manual. For detailed information on performing the LR recombination reaction, refer to the Gateway [®] Technology Manual.
Resuspending pYES-DEST52	Before you perform the LR Clonase [™] reaction, resuspend pYES-DEST52 to 50-150 ng/µl in sterile water.
	continued on next page

Using pYES-DEST52, continued

Points to Consider Before Recombining	Your insert should contain a yeast consensus sequence for proper initiation of translation, although this requirement is not as stringent in yeast (Cigan and Donahue, 1987; Romanos <i>et al.</i> , 1992). An example of a yeast consensus sequence is provided below (Romanos <i>et al.</i> , 1992). Note that a "U" at position –3 decreases expression 2-fold. The AUG initiation codon is shown underlined.
	(A/Y) A (A/U) A <u>AUG</u> UCU
	If you wish to include the V5 epitope and 6xHis tag, your gene in the entry clone should not contain a stop codon. In addition, the gene should be designed to be in frame with the C-terminal epitope tag after recombination. Refer to the Recombination Region on the next page.
	If you do NOT wish to include the V5 epitope and 6xHis tag, be sure that your gene contains a stop codon in the entry clone.
Recombining Your Gene of Interest	Each entry clone contains <i>att</i> L sites flanking the gene of interest. Genes in an entry clone are transferred to the destination vector backbone by mixing the DNAs with the Gateway [®] LR Clonase TM enzyme mix (see page vi for ordering information). The resulting recombination reaction is then transformed into <i>E. coli</i> and the expression clone selected. Recombination between the <i>att</i> R sites on the destination vector and the <i>att</i> L sites on the entry clone replaces the <i>ccdB</i> gene and the chloramphenicol (Cm ^R) gene with the gene of interest and results in the formation of <i>attB</i> sites in the expression clone.
	Follow the instructions in the Gateway [®] Technology Manual to set up the LR Clonase ^{TM} reaction, transform <i>E. coli</i> , and select for the expression clone.
	continued on next page

Using pYES-DEST52, continued

Con the Exp Cloi	firming ression ne	The <i>ccd</i> B gene mutates at a very low frequency, resulting in a very low number of false positives. True expression clones will be ampicillin-resistant and chloramphenicol-sensitive. Transformants containing a plasmid with a mutated <i>ccd</i> B gene will be both ampicillin- and chloramphenicol-resistant. To check your putative expression clone, test for growth on LB plates containing 30 μ g/ml chloramphenicol. A true expression clone will not grow in the presence of chloramphenicol.	
Rec Reg	Recombination The recombination region of the expression clone resulting from pYES-DEST52 × entry clone is shown below. Features of the Recombination Region:		
 Shaded regions correspond to those DNA sequences transferred from the entry clone into pYES-DEST52 by recombination. Non-shaded regions are derived from the pYES_DEST52 voctor. 			
		 The underlined nucleotides flanking the shaded region correspond to bases 518 and 2228, respectively, of the pYES-DEST52 vector sequence. 	
		GAL1 Promoter	
401	АСААААААТТ G ТGTTTTTTAA C	TTAATATAC CTCTATACTT TAACGTCAAG GAGAAAAAAC CCCGGATCGG AATTATATG GAGATATGAA ATTGCAGTTC CTCTTTTTTG GGGCCTAGCC	
		T7 promoter 518	
461	ACTACTAGCA G TGATGATCGT C	CTGTAATAC GACTCACTAT AGGGAATATT AAGCTATCAA ACAAGTT <u>G</u> GACATTATG CTGAGTGATA TCCCTTATAA TTCGATAGTT, TGTTCAAACA	
		2228	
521	ACAAAAAAGC A TGTTTTTTCG T	GGCTN NAC CCA GCT TT <u>C</u> TTG TAC AAA GTG GTT CGA CCGAN- GENE NTG GGT CGA AAG AAC ATG TTT CAC CAA GCT	
	attB1	attB2	
		V5 epitope	
2247	TCT AGA GGG AGA TCT CCC	CCC TTC GAA GGT AAG CCT ATC CCT AAC CCT CTC CTC GGT CTC GGG AAG CTT CCA TTC GGA TAG GGA TTG GGA GAG GAG CCA GAG	
	asp ser thr	6xHistag arg thr gly his his his his his his ***	
2298	GAT TCT ACG CTA AGA TGC	CGT ACC GGT CAT CAT CAC CAT TGA GTT TAAACCCGCT GCA TGG CCA GTA GTA GTG GTA GTG GTA ACT CAA ATTTGGGCGA	

Yeast Transformation

Introduction	Once you have selected your expression clone, you are ready to transform it into yeast and test for expression of your gene. We recommend that you include a negative control in your experiments to evaluate your results.
Plasmid Preparation	You may use any method of your choice to prepare purified plasmid DNA for small-scale yeast transformation. Standard protocols may be found in <i>Current Protocols in Molecular</i> <i>Biology</i> (Ausubel <i>et al.</i> , 1994) or <i>Molecular Cloning: A</i> <i>Laboratory Manual</i> (Sambrook <i>et al.</i> , 1989). For your convenience, the S.N.A.P. [™] MidiPrep Kit (Catalog no. K1910- 01) is available from Invitrogen for isolation of plasmid DNA from 10-100 ml of bacterial culture.
Basic Yeast Molecular Biology	The user should be familiar with basic yeast molecular biology and microbiological techniques. Refer to <i>Current</i> <i>Protocols in Molecular Biology</i> , Unit 13 (Ausubel <i>et al.</i> , 1994) and the <i>Guide to Yeast Genetics and Molecular Biology</i> (Guthrie and Fink, 1991) for information on preparing yeast media and handling yeast.
Yeast Host Strain	To successfully transform your pYES-DEST52 construct into yeast, the strain must contain the <i>ura3</i> genotype (Ura ⁻). For expression, we recommend the diploid strain INVSc1. (see page vi for ordering information). Note that INVSc1 does not sporulate well and is therefore not suitable for yeast genetic studies.

Yeast Transformation, continued

Yeast Transformation	Use any method of your choice to transform your pYES- DEST52 construct into the appropriate yeast host strain. A small-scale yeast transformation protocol is included in the Appendix (page 19) for your convenience. Refer to general reference sources (Ausubel <i>et al.</i> , 1994) or published references (Gietz <i>et al.</i> , 1992; Gietz <i>et al.</i> , 1995; Hill <i>et al.</i> , 1991; Schiestl and Gietz, 1989) for other protocols.
	The <i>S. c.</i> EasyComp TM Kit from Invitrogen (Catalog no. K5050-01) provides a quick and easy method for the preparation of competent yeast cells that can be used immediately or stored frozen for future use. Transformation efficiency is guaranteed at >10 ³ transformants per μ g DNA.
	Select for transformants on SC-U (SC minimal media lacking uracil) selective plates (see the Appendix , page 15 for a recipe). Transformants should exhibit uracil prototrophy. Once you have identified a transformant, be sure to prepare a glycerol stock for long-term storage.
Maintenance of Transformants	Maintain yeast cells containing your pYES-DEST52 construct in SC-U medium containing 2% glucose or 2% raffinose. See the Appendix , page 15, for a recipe for SC-U medium.

Expressing the Gene of Interest

Introduction	Once you have obtained a transformant containing your pYES-DEST52 construct, you are ready to induce expression of your recombinant protein of interest. This section provides guidelines on how to induce and assay for expression of your protein of interest.
GAL1 Promoter	In typical <i>S. cerevisiae</i> laboratory strains (<i>e.g.</i> INVSc1), transcription from the <i>GAL1</i> promoter is repressed in the presence of glucose (West <i>et al.</i> , 1984). Removing glucose and adding galactose as a carbon source induces transcription (Giniger <i>et al.</i> , 1985). Maintaining cells in glucose gives the most complete repression and the lowest basal transcription of the <i>GAL1</i> promoter. Transferring cells from glucose- to galactose-containing medium causes the <i>GAL1</i> promoter to become derepressed and transcription to be induced.
	Alternatively, cells may be maintained in medium containing raffinose as a carbon source. The presence of raffinose does not repress or induce transcription from the <i>GAL1</i> promoter. Addition of galactose to the medium induces transcription from the <i>GAL1</i> promoter even in the presence of raffinose. Induction of the <i>GAL1</i> promoter by galactose is more rapid in cells maintained in raffinose when compared to those maintained in glucose.
	You may choose to grow cells containing your pYES-DEST52 construct in glucose or raffinose depending on how quickly you want to obtain your expressed protein after induction with galactose and on the toxicity of the expressed protein. For more information about expression in yeast, refer to the <i>Guide to Yeast Genetics and Molecular Biology</i> (Guthrie and Fink, 1991).
	For a protocol to induce expression of your protein with galactose, proceed to Time Course of Protein Induction by Galactose on the next page.

Expressing the Gene of Interest, continued

Before Starting	Be sure you have the following reagents and equipment on hand before starting.
U	 SC-U medium containing 2% raffinose or 2% glucose (see Recipes, page 15)
	• 50 ml conical tubes
	 SC-U medium containing 2% galactose (see Recipes, page 16)
	• 250 ml culture flasks
	Table-top centrifuge
	• 15 ml snap-cap, sterile plastic tubes
	Sterile water
	Sterile microcentrifuge tubes
	• 30°C water bath
Time Course of Protein Induction by Galactose	To induce expression of your protein of interest from the $GAL1$ promoter, galactose is added to the medium. For cells that have been maintained in glucose, recombinant protein can be detected in as little as 4 hours after galactose induction. Recombinant protein can be detected in cells that have been cultured in raffinose by 2 hours after galactose induction.
	It you are assaying for expression of your recombinant

protein for the first time, we recommend that you perform a time course to optimize expression of your recombinant protein (*e.g.* 0, 4, 8, 12, 16, 24 hours after galactose induction). A standard protocol is provided below to perform a time course experiment. Other protocols are suitable.

Expressing the Gene of Interest, continued

Time Course of Protein Induction by Galactose, continued

- 1. Inoculate a single colony containing your pYES-DEST52 construct into 15 ml of SC-U medium containing 2% raffinose or 2% glucose. Grow overnight at 30°C with shaking.
- 2. Determine the OD_{600} of your overnight culture. Calculate the amount of overnight culture necessary to obtain an OD_{600} of 0.4 in 50 ml of induction medium (SC-U medium containing 2% galactose).

Example: Assume that the OD_{600} of your overnight culture is 3 OD_{600} per ml. Then, the amount of overnight culture needed to inoculate a 50 ml culture to $OD_{600} = 0.4$ is

(0.4 OD/ml)(50 ml) = 6.67 ml3 OD/ml

- 3. Remove the amount of overnight culture as determined in Step 2 and pellet the cells at $1500 \times g$ for 5 minutes at $+4^{\circ}$ C. Discard the supernatant.
- Resuspend the cells in 1-2 ml of induction medium and inoculate into 50 ml of induction medium. See the Appendix, page 16 for a recipe for induction medium. Grow at 30°C with shaking.
- 5. Harvest an aliquot of cells at 0, 4, 8, 12, 16, and 24 hours after addition of cells to the induction medium. For each time point, remove 5 ml of culture from the flask and determine the OD_{600} of each sample. You will use this information when assaying for your recombinant protein (see Step 3 on page 12).
- 6. Centrifuge the cells at $1500 \times g$ for 5 minutes at $+4^{\circ}C$.
- 7. Decant the supernatant. Resuspend cells in 500 μl of sterile water.
- 8. Transfer cells to a sterile microcentrifuge tube. Centrifuge samples for 30 seconds at top speed in the microcentrifuge.
- 9. Remove the supernatant.
- 10. Store the cell pellets at -80°C until ready to use. Proceed to page the next page to prepare cell lysates to detect your recombinant protein.

Analyzing Samples

Detecting Recombinant Protein

You may use an enzymatic assay to detect your protein or Western blot. To detect the recombinant protein by Western blot (see below), you may use the Anti-V5 antibodies or the Anti-His(C-term) antibodies available from Invitrogen (see page vi for ordering information) or an antibody to your protein.

You will also need to prepare a cell lysate from your yeast transformant. A general protocol for small-scale preparation of cell lysates using acid-washed glass beads is provided below for your convenience. Other protocols are suitable. Refer to (Ausubel *et al.*, 1994) for more information. For large-scale preparations (culture volumes over 1 liter), see **Scale-up** on page 13.

Materials Needed:

- Breaking buffer:
 50 mM sodium phosphate, pH 7.4, (see page 17 for recipe of the stock buffer)
 1 mM EDTA (omit EDTA if using this buffer for purification on metal-chelating resins)
 5% glycerol
 1 mM PMSF
- Acid-washed glass beads (0.4-0.6 mm size; Sigma-Aldrich, Catalog no. G8772)

Analyzing Samples, continued

Detecting	
Recombinant	
Protein,	
continued	

Protocol:

1. You may prepare cell lysates from either frozen cells or fresh cells.

Reminder: You will need to know the OD₆₀₀ of your cell sample(s) before beginning (see Step 5, page 10).

- 2. Resuspend fresh or frozen cell pellets in 500 μ l of breaking buffer. Centrifuge at 1500 x g for 5 minutes at +4°C to pellet cells.
- 3. Remove supernatant and resuspend the cells in a volume of breaking buffer to obtain an OD_{600} of 50-100. Use the OD_{600} determined in Step 5, page 10, to calculate the appropriate volume of breaking buffer to use.
- 4. Add an equal volume of acid-washed glass beads.
- 5. Vortex mixture for 30 seconds, followed by 30 seconds on ice. Repeat four times for a total of four minutes to lyse the cells. Cells will be lysed by shear force. You can check for the extent of lysis by checking a small aliquot under the microscope.
- 6. Centrifuge your sample(s) containing glass beads in a microcentrifuge for 10 minutes at maximum speed.
- 7. Remove supernatant and transfer to a fresh microcentrifuge tube. Assay the lysate for protein concentration using BSA as a standard.
- 8. Add SDS-PAGE sample buffer to a final concentration of 1X and heat the sample for 5 minutes at 70°C.
- Load 20 µg of lysate onto an SDS-PAGE gel and electrophorese. Use the appropriate percentage of acrylamide to resolve your recombinant protein.

The C-terminal peptide containing the V5 epitope and the polyhistidine tag will add approximately 4 kDa to the size of your protein

Purification

Scale-up of Expression for Purification	Once you have determined the optimal induction time necessary to obtain maximal protein expression, you may increase the protein yield by scaling up the procedure described on page 10. To prepare cell lysates from culture volumes over 1 liter, we recommend that you use a bead beater (Biospec Products, Bartlesville, OK) to lyse the cells Refer to <i>Current Protocols in Molecular Biology</i> , Unit 13.13 (Ausubel <i>et al.</i> , 1994) for a suitable protocol to lyse cells wi a bead beater.		
Purification of Recombinant Fusion Proteins	The presence of the C-terminal polyhistidine (6xHis) tag in your recombinant fusion protein allows use of a metal- chelating resin such as ProBond [™] to purify your fusion protein. The ProBond [™] Purification System and bulk ProBond [™] resin are available from Invitrogen (see page vii for ordering information). Refer to the ProBond [™] Purification System manual for protocols to purify your fusion protein. Invitrogen also offers Ni-NTA Agarose (Catalog no. R901-01) for purification of proteins containing a polyhistidine (6xHis) tag. Note: Other metal-chelating resins and purification methods are suitable.		
Note	If you are using the breaking buffer for purification of your recombinant protein using ProBond [™] , do not include EDTA in this buffer as it will interfere with binding of the proteins on ProBond [™] .		

13

Appendix

Recipes

LB (Luria-
Bertani)
Medium and
Plates

Composition:

1.0% Tryptone 0.5% Yeast Extract 1.0% NaCl pH 7.0

- 1. For 1 liter, dissolve 10 g tryptone, 5 g yeast extract, and 10 g NaCl in 950 ml deionized water.
- 2. Adjust the pH of the solution to 7.0 with NaOH and bring the volume up to 1 liter.
- 3. Autoclave on liquid cycle for 20 minutes at 15 psi. Allow solution to cool to 55°C and add antibiotic if needed (50- $100 \mu g/ml$ ampicillin).
- 4. Store at room temperature or at +4°C.

LB agar plates

- 1. Prepare LB medium as above, but add 15 g/L agar before autoclaving.
- 2. Autoclave on liquid cycle for 20 minutes at 15 psi.
- 3. After autoclaving, cool to ~55°C, add antibiotic (50- $100 \ \mu g/ml$ of ampicillin), and pour into 10 cm plates.
- 4. Let harden, then invert and store at $+4^{\circ}$ C, in the dark.

SC Minimal Medium and Plates	 0.67% yeast nitrogen base (without amino acids with ammonium sulfate) 2% carbon source (<i>e.g.</i> glucose or raffinose) 0.01% (adenine, arginine, cysteine, leucine, lysine, threonine, tryptophan, uracil) 0.005% (aspartic acid, histidine, isoleucine, methionine, phenylalanine, proline, serine, tyrosine, valine) 		
	 2% agar (for plates) Dissolve the following reagents in 900 ml deionized water (800 ml if preparing medium containing raffinose). Note: We make medium and plates as we need them and weigh out each amino acid. Many researchers prepare 100X solutions of each amino acid that they need. Beminder: Omit uracil to make selective plates for 		

growing pYES-DEST52 expression clone transformants.6.7 g Yeast Nitrogen Base0.1 g each0.05 g each

Nitrogen Base	0.1 g each	0.05 g each
	adenine	aspartic acid
	arginine	histidine
	cysteine	isoleucine
	leucine	methionine
	lysine	phenylalanine
	threonine	proline
	tryptophan	serine
	uracil (U)	tyrosine
		valine

- 2. If you are making plates, add the agar after dissolving the reagents above.
- 3. Autoclave at 15 psi, 121°C for 20 minutes.
- 4. Cool to 50°C and add 100 ml of filter-sterilized 20% glucose or 200 ml of filter-sterilized 10% raffinose.
- 5. Pour plates and allow to harden. Invert the plates and store at +4°C. Plates are stable for 6 months.

Induction Medium	If you are making induction medium, follow Steps 1-3 on the previous page except dissolve the reagents in 800 ml of deionized water. Cool the medium to 50°C and add 100 ml of filter-sterilized 20% galactose and 100 ml of filter- sterilized 10% raffinose to the medium.	
CAUTION	When making stock solutions of raffinose, do not autoclave the stock solution. Autoclaving the solution will convert the raffinose to glucose. Filter-sterilize the stock solution.	
YPD	<u>Y</u> east Extract <u>P</u> eptone <u>D</u> extrose Medium (1 liter) 1% yeast extract 2% peptone 2% dextrose (D-glucose)	
	 Dissolve 10 g yeast extract, 20 g peptone, and 20 g dextrose (see note below if making plates) in 1000 ml of water. 	
	2. Optional: Add 20 g agar, if making plates.	
	3. Autoclave for 20 minutes on liquid cycle.	
	4. Store medium at room temperature or cool the medium and pour plates. The shelf life is approximately one to two months.	
	Note: If making plates, omit dextrose from Step 1.	

Note: If making plates, omit dextrose from Step 1. Autoclaving agar and dextrose together will cause the dextrose to caramelize. Prepare a separate stock solution of 20% dextrose and autoclave or filter-sterilize. After the YPD broth has been autoclaved, add 100 ml of 20% dextrose to the medium.

0.1 M Sodium	Befo	Before beginning, have the following reagents on hand.			
Phosphate, pH 7.4	Sodium phosphate, monobasic (NaH ₂ PO ₄ ·H ₂ O; Sigma- Aldrich S9638)				
	Sod S939	Sodium phosphate, dibasic (Na ₂ HPO ₄ ·7H ₂ O; Sigma-Aldrich S9390)			
	1.	Prepare 100 ml of 1 M NaH ₂ PO ₄ ·H ₂ O by dissolving 13.8 g in 90 ml of deionized water. Bring volume up to 100 ml. Filter-sterilize.			
	2.	Prepare 100 ml of 1 M Na ₂ HPO ₄ ·7H ₂ O by dissolving 26.81 g in 90 ml of deionized water. Bring volume up to 100 ml. Filter-sterilize.			
	3.	For 1L of 0.1 M sodium phosphate, pH 7.4, mix together 22.6 ml of 1 M NaH_2PO_4 and 77.4 ml of 1 M Na_2HPO_4 . Bring up the volume to 1 L with deionized water.			
	4.	Filter-sterilize and store at room temperature.			
10X TE	100 10 n	mM Tris, pH 7.5 nM EDTA			
	1.	For 100 ml, dissolve 1.21 g of Tris base and 0.37 g of EDTA in 90 ml of deionized water.			
	2.	Adjust pH to 7.5 with concentrated HCl and bring the volume up to 100 ml.			
	3.	Filter sterilize and store at room temperature.			
	Alternatively, you can make the solution using 1 M Tris- HCl, pH 7.5 and 0.5 M EDTA, pH 8.0.				
1X TE	10 n	nM Tris, pH 7.5			
	1 m	M EDTA			

10X LiAc	1 M Lithium Acetate, pH 7.5			
	1. For 100 ml, dissolve 10.2 g of lithium acetate in 90 ml of deionized water.			
	 Adjust pH to 7.5 with dilute glacial acetic acid and bring up the volume to 100 ml. 			
	3. Filter sterilize and store at room temperature.			
1X LiAc	100 mM Lithium Acetate, pH 7.5			
	Dilute 10X LiAc solution 10-fold with sterile, deionized water.			
1X LiAc/ 0.5X TE	100 mM Lithium Acetate, pH 7.5 5 mM Tris-HCl, pH 7.5 0.5 mM EDTA			
	1. For 100 ml, mix together 10 ml of 10X LiAc and 5 ml of 10X TE.			
	 Add deionized water to 100 ml. Filter-sterilize and store at room temperature. 			
50% PEG-3350	 For 100 ml, dissolve 50 g of PEG-3350 in 90 ml of deionized water. You may have to heat the solution to fully dissolve the PEG. 			
	 Bring up the volume to 100 ml with deionized water. Autoclave at 121°C, 15 psi for 20 minutes. Store at room temperature. 			
1X LiAc/40% PEG-3350/ 1X TE	100 mM Lithium Acetate, pH 7.5 40% PEG-3350 10 mM Tris-HCl, pH 7.5 1 mM EDTA			
	1. Prepare solution immediately prior to use. For 100 ml, mix together 10 ml of 10X LiAc, 10 ml of 10X TE, and 80 ml of 50% PEG-3350.			
	2. Filter-sterilize.			

Small-Scale Yeast Transformation

Introduction A small-scale yeast transformation protocol for routing transformations is provided below. Other protocols ar suitable. The <i>S.c.</i> EasyComp [™] Transformation Kit (see for ordering information) is available from Invitrogen rapid preparation of transformation-competent yeast of For more information, refer to our Web site (www.invitrogen.com) or contact Technical Service (p			
Materials Needed	Be sure to have the following reagents on hand before starting.		
	• YPD liquid medium (see Recipe , page 16)		
	• 1X TE (see Recipe , page 17)		
	• 1X LiAc/0.5X TE (see Recipe , page 18)		
	• Denatured salmon sperm DNA (see recipe on page 21)		
	• pYES-DEST52 construct		
	• 1X LiAc/40% PEG-3350/1X TE (see Recipe , page 18)		
	• DMSO		
	Selective plates		
	continued on next page		

Small-Scale Yeast Transformation, continued

Protocol	1.	Inoculate 10 ml of YPD medium with a colony of your yeast strain and shake overnight at 30°C.
	2.	Determine the OD_{600} of your overnight culture. Dilute culture to an OD_{600} of 0.4 in 50 ml of YPD medium and grow an additional 2-4 hours.
	3.	Pellet the cells at 2500 rpm. Resuspend the pellet in 40 ml 1X TE.
	4.	Pellet the cells at 2500 rpm. Resuspend the pellet in 2 ml of 1X LiAc/0.5X TE.
	5.	Incubate the cells at room temperature for 10 minutes.
	6.	For each transformation, mix together 1 μ g plasmid DNA and 100 μ g denatured sheared salmon sperm DNA with 100 μ l of the yeast suspension from Step 5.
	7.	Add 700 μl of 1X LiAc/40% PEG-3350/1X TE and mix well.
	8.	Incubate solution at 30°C for 30 minutes.
	9.	Add 88 μl DMSO, mix well, and heat shock at 42°C for 7 minutes.
	10.	Centrifuge in a microcentrifuge for 10 seconds and remove supernatant.
	11.	Resuspend the cell pellet in 1 ml 1X TE and re-pellet.
	12.	Resuspend the cell pellet in 50-100 μl 1X TE and plate on a selective plate.

To calculate the number of yeast cells, assume that 1 OD_{600} unit = ~2.0 x 10⁷ yeast cells/ml.

Preparing Denatured Salmon Sperm DNA

Introduction	A convenient protocol to make denatured salmon sperm DNA (Schiestl and Gietz, 1989) is provided for your convenience. You may also purchase denatured salmon sperm DNA from Sigma-Aldrich (Catalog no. D9156).		
Protocol	1.	In a 250 ml flask, dissolve 1 g salmon sperm DNA (Sigma-Aldrich, Catalog no. D1626) into 100 ml of TE (10 mg/ml). Pipet up and down with a 10 ml pipet to dissolve completely.	
	2.	Incubate overnight at +4°C.	
	3.	Using a sonicator with a large probe, sonicate the DNA twice for 30 seconds at 3/4 power. The resulting DNA will have an average size of 7 kb. You may verify the size of the DNA on a gel.	
	4.	Aliquot sonicated DNA into four 50 ml conical centrifuge tubes (25 ml per tube).	
	5.	Extract with 25 ml of TE-saturated phenol. Centrifuge at 10,000 x g for 5 minutes at +4°C. Transfer the DNA (upper layer) to a fresh 50 ml conical centrifuge tube.	
	6.	Extract with 25 ml of TE-saturated phenol:chloroform:isoamyl alcohol (25:24:1). Centrifuge at 10,000 x g for 5 minutes at $+4^{\circ}$ C. Transfer the DNA (upper layer) to a fresh 50 ml conical centrifuge tube.	
	7.	Extract with 25 ml of chloroform. Centrifuge at 10,000 x g for 5 minutes at +4°C. Transfer the DNA (upper layer) to a 250 ml centrifuge bottle.	
	8.	Add 5 ml of 3 M sodium acetate, pH 6.0 (1/10 volume) and 125 ml ice-cold (-20°C) 95% ethanol (2.5 volume) to precipitate DNA.	
	9.	Pellet the DNA at 12,000 x g for 15 minutes at $+4^{\circ}$ C.	
	10.	Wash the DNA once with 200 ml 70% ethanol and centrifuge as described in step 9.	
	11.	Partially dry DNA by air or in a Speed-Vac (cover tubes with Parafilm [®] and poke holes in top) for 20 minutes.	
	12.	Transfer DNA to a 250 ml sterile flask and dissolve DNA in 100 ml sterile TE (10 mg/ml).	
	13.	Boil for 20 minutes to denature DNA. Immediately place on ice, aliquot in 1 ml samples, and freeze at -20°C.	

Map and Features of pYES-DEST52

Map of pYES-DEST52

The map below shows the elements of pYES-DEST52. DNA from the entry clone replaces the region between bases 518 and 2228. The complete sequence of pYES-DEST52 is available from our Web site (www.invitrogen.com) or by contacting Technical Service (page 24).

Map and Features of pYES-DEST52, continued

Features of pYES-DEST52

pYES-DEST52 (7621 bp) contains the following elements. All features have been functionally tested.

Feature	Benefit
GAL1 promoter	Allows inducible expression of genes cloned into pYES-DEST52 (West <i>et al.,</i> 1984)
T7 promoter	Allows <i>in vitro</i> transcription in the sense orientation
attR1 and attR2 sites	Allows recombinational cloning of the gene of interest from an entry clone
Chloramphenicol resistance gene	Allows counterselection of expression clones
ccdB gene	Allows negative selection of expression clones
V5 epitope	Allows detection of the fusion protein by the
(Gly-Lys-Pro-Ile-Pro-Asn-Pro- Leu-Leu-Gly-Leu-Asp-Ser-Thr)	Anti-V5 antibodies (Southern <i>et al.,</i> 1991)
C-terminal polyhistidine tag	Allows purification of your fusion protein on metal-chelating resin (<i>e.g.</i> ProBond ^{TM}).
	Allows detection of the recombinant protein by the Anti-His(C-term) antibodies (Lindner <i>et al.,</i> 1997)
<i>CYC1</i> transcription termination signal	Allows efficient termination and stabilization of mRNA
pUC origin	Allows high copy number replication and growth in <i>E. coli</i>
Ampicillin (bla) resistance gene	Allows selection of transformants in E. coli
URA3 gene	Allows selection of yeast transformants in uracil-deficient medium
2μ origin	Allows maintenance and high copy replication in yeast
f1 origin	Allows rescue of single-stranded DNA

Technical Service

World Wide Web

Visit the Invitrogen Web Resource using your World Wide Web browser. At the site, you can:

- Get the scoop on our hot new products and special product offers
- View and download vector maps and sequences
- Download manuals in Adobe[®] Acrobat[®] (PDF) format
- Explore our catalog with full color graphics
- Obtain citations for Invitrogen products
- Request catalog and product literature

Once connected to the Internet, launch your Web browser (Internet Explorer 5.0 or newer or Netscape 4.0 or newer), then enter the following location (or URL):

http://www.invitrogen.com

...and the program will connect directly. Click on underlined text or outlined graphics to explore. Don't forget to put a bookmark at our site for easy reference!

Contact Us

For more information or technical assistance, please call, write, fax, or email. Additional international offices are listed on our Web page (www.invitrogen.com).

Corporate Headquarters:

1	1	1	1
Invitrogen	Corporation	Invitrogen I	Ltd
1600 Farad	ay Avenue	Inchinnan B	Business Park
Carlsbad, G	CA 92008 USA	3 Fountain I	Drive
Tel: 1 760 6	03 7200	Paisley PA4	9RF, UK
Tel (Toll Fr	ree): 1 800 955 6288	Tel: +44 (0)	141 814 6100
Fax: 1 760 6	602 6500	Tech Fax: +4	44 (0) 141 814 6117
E-mail: tech_servic	e@invitrogen.com	E-mail: eurotech@ir	nvitrogen.com

continued on next page

European Headquarters:

Technical Service, continued

Limited Warranty

Invitrogen is committed to providing our customers with highquality goods and services. Our goal is to ensure that every customer is 100% satisfied with our products and our service. If you should have any questions or concerns about an Invitrogen product or service, please contact our Technical Service Representatives. Invitrogen warrants that all of its products will perform according to the specifications stated on the certificate of analysis. The company will replace, free of charge, any product that does not meet those specifications. <u>This warranty limits Invitrogen Corporation's liability only to the cost of the product</u>. No warranty is granted for products beyond their listed expiration date. No warranty is applicable unless all product components are stored in accordance with instructions. Invitrogen reserves the right to select the method(s) used to analyze a product unless Invitrogen agrees to a specified method in writing prior to acceptance of the order.

Invitrogen makes every effort to ensure the accuracy of its publications, but realizes that the occasional typographical or other error is inevitable. Therefore Invitrogen makes no warranty of any kind regarding the contents of any publications or documentation. If you discover an error in any of our publications, please report it to our Technical Service Representatives.

Invitrogen assumes no responsibility or liability for any special, incidental, indirect or consequential loss or damage whatsoever. The above limited warranty is sole and exclusive. No other warranty is made, whether expressed or implied, including any warranty of merchantability or fitness for a particular purpose.

Purchaser Notification

Introduction	Use of pYES-DEST52 is covered under the licenses detailed below.	
Limited Use Label License No. 19: Gateway [®] Cloning Products	Use of pYES-DEST52 is covered under the licenses detailed below. The Gateway [®] Cloning Technology products and their use are the subject of one or more of U.S. Patent Nos. 5,888,732, 6,143,557, 6,171,861, 6,270,969, and 6,277,608 and/or other pending U.S. and foreign patent applications owned by Invitrogen Corporation. The purchase of this product conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product in research conducted by the buyer (whether the buyer is an academic or for-profit entity). No license is conveyed under the foregoing patents to use this product with any recombination sites other than those purchased from Invitrogen Corporation or its authorized distributor. The buyer cannot modify the recombination sequence(s) contained in this product for any purpose. The buyer cannot sell or otherwise transfer (a) this product or its components for commercial made using this product or its components for Commercial Purposes. The buyer may transfer information or materials made using this product or its components for Commercial Purposes. The buyer may transfer information or materials made through the use of this product to a scientific collaborator, provided that such collaborator agrees in writing (a) not to transfer such materials to any third part and (b) to use such transferred materials and/or information solely for research and not for Commercial Purposes. Commercial Purposes means any activity by a party for consideration and may include, but is not limited to: (1) use of the product or its components in manufacturing; (2) use of the product or its components to provide a service, information, or data; (3) use of the product or its component for therapeutic, diagnostic or prophylactic purposes; or (4) resale of the product or its components, whether or not such product or its components are resold for use in research. Invitrogen	

Purchaser Notification, continued

Limited Use Label License No. 19: Gateway [®] Cloning Products, continued	Corporation will not assert a claim against the buyer of infringement of the above patents based upon the manufacture, use or sale of a therapeutic, clinical diagnostic, vaccine or prophylactic product developed in research by the buyer in which this product or its components was employed, provided that neither this product nor any of its components was used in the manufacture of such product. If the purchaser is not willing to accept the limitations of this limited use statement, Invitrogen is willing to accept return of the product with a full refund. For information on purchasing a license to this product for purposes other than research, contact Licensing Department, Invitrogen Corporation, 1600 Faraday Avenue, Carlsbad, California 92008. Phone (760) 603-7200. Fax (760) 602-6500.	
Limited Use Label License No. 22: Vectors and Clones Containing Sequences Coding for Histidine Hexamer	This product is licensed under U.S. Patent Nos. 5,284,933 and 5,310,663 and foreign equivalents from Hoffmann- LaRoche, Inc., Nutley, NJ and/or Hoffmann-LaRoche Ltd., Basel, Switzerland and is provided only for use in research. Information about licenses for commercial use is available from: QIAGEN GmbH Max-Volmer-Str. 4 D-40724 Hilden Germany	
Limited Use Label License No. 141: Expression of Polypeptides in Yeast	This product is the subject of one or more of U.S. Patent Nos. 5,618,676, 5,854,018, 5,856,013, 5,919,651 and foreign equivalents. Rights to use this product are limited to academic research use only. For-profit entities are required to obtain a separate license from Washington Research Foundation to utilize this product for any use. Washington Research Foundation, 2815 Eastlake Avenue East, Suite 300, Seattle, Washington 98102. Tel: 206-336-5600. Fax: 206-336-	

5615.

Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (1994). Current Protocols in Molecular Biology (New York: Greene Publishing Associates and Wiley-Interscience).

Cigan, A. M., and Donahue, T. F. (1987). Sequence and Structural Features Associated with Translational Initiator Regions in Yeast--A Review. Gene *59*, 1-18.

Gietz, D., Jean, A. S., Woods, R. A., and Schiestl, R. H. (1992). Improved Method for High-Efficiency Transformation of Intact Yeast Cells. Nuc. Acids Res. 20, 1425.

Gietz, R. D., Schiestl, R. H., Willems, A. R., and Woods, R. A. (1995). Studies on the Transformation of Intact Yeast Cells by the LiAc/SS-DNA/PEG Procedure. Yeast *11*, 355-360.

Giniger, E., Varnum, S. M., and Ptashne, M. (1985). Specific DNA Binding of GAL4, a Positive Regulatory Protein of Yeast. Cell *40*, 767-774.

Guthrie, C., and Fink, G. R. (1991) Guide to Yeast Genetics and Molecular Biology. In *Methods in Enzymology*, Vol. 194. (M. I. Simon, ed. Academic Press, San Diego, CA.

Hill, J., Donald, K. A., and Griffiths, D. E. (1991). DMSO-Enhanced Whole Cell Yeast Transformation. Nucleic Acids Res. *19*, 5791.

Landy, A. (1989). Dynamic, Structural, and Regulatory Aspects of Lambda Sitespecific Recombination. Annu. Rev. Biochem. 58, 913-949.

Lindner, P., Bauer, K., Krebber, A., Nieba, L., Kremmer, E., Krebber, C., Honegger, A., Klinger, B., Mocikat, R., and Pluckthun, A. (1997). Specific Detection of His-tagged Proteins With Recombinant Anti-His Tag scFv-Phosphatase or scFv-Phage Fusions. BioTechniques 22, 140-149.

Romanos, M. A., Scorer, C. A., and Clare, J. J. (1992). Foreign Gene Expression in Yeast: A Review. Yeast *8*, 423-488.

Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, Second Edition (Plainview, New York: Cold Spring Harbor Laboratory Press).

Schiestl, R. H., and Gietz, R. D. (1989). High Efficiency Transformation of Intact Cells Using Single Stranded Nucleic Acids as a Carrier. Curr. Genet. 16, 339-346.

Southern, J. A., Young, D. F., Heaney, F., Baumgartner, W., and Randall, R. E. (1991). Identification of an Epitope on the P and V Proteins of Simian Virus 5 That Distinguishes Between Two Isolates with Different Biological Characteristics. J. Gen. Virol. *72*, 1551-1557.

West, R. W. J., Yocum, R. R., and Ptashne, M. (1984). *Saccharomyces cerevisiae* GAL1-GAL10 Divergent Promoter Region: Location and Function of the Upstream Activator Sequence UAS_G. Mol. Cell. Biol. *4*, 2467-2478.

©2002 Invitrogen Corporation. All rights reserved.

Corporate Headquarters:

Invitrogen Corporation 1600 Faraday Avenue Carlsbad, California 92008 Tel: 1 760 603 7200 Tel (Toll Free): 1 800 955 6288 Fax: 1 760 603 7229 Email: tech_service@invitrogen.com

European Headquarters:

Invitrogen Ltd 3 Fountain Drive Inchinnan Business Park Paisley PA4 9RF, UK Tel (Free Phone Orders): 0800 269 210 Tel (General Enquiries): 0800 5345 5345 Fax: +44 (0) 141 814 6287 Email: eurotech@invitrogen.com

International Offices:

Argentina 5411 4556 0844 Australia 1 800 331 627 Austria 0800 20 1087 Belgium 0800 14894 Brazil 0800 11 0575 Canada 800 263 6236 China 10 6849 2578 Denmark 80 30 17 40

France 0800 23 20 79 Germany 0800 083 0902 Hong Kong 2407 8450 India 11 577 3282 Italy 02 98 22 201 Japan 03 3663 7974 The Netherlands 0800 099 3310 New Zealand 0800 600 200 Norway 00800 5456 5456

Spain & Portugal 900 181 461 Sweden 020 26 34 52 Switzerland 0800 848 800 Taiwan 2 2651 6156 UK 0800 838 380 For other countries see our Web site

www.invitrogen.com