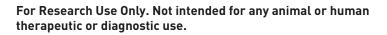
USER GUIDE


pShooter™ Vector (pCMV/*myc* vectors)

For the intracellular targeting of recombinant proteins and antibodies

Catalog numbers V820-20, V821-20, V822-20, V823-20

Revision date 29 March 2012 Publication Part number 28-0180

MAN0000660

Contents

Kit Contents and Storage	iv
Introduction	1
Product Overview	1
Methods	3
General Guidelines	3
Cloning into pCMV/ <i>myc</i> /cyto	5
Cloning into pCMV/ <i>myc</i> /nuc	6
Cloning into pCMV/ <i>myc</i> /mito	7
Cloning into pCMV/ <i>myc</i> /ER	8
Transfecting Mammalian Cells	
Detecting Fusion Proteins	
Troubleshooting	
Detection of GFP	
Appendix	16
Features of pCMV/ <i>myc</i> Plasmids	
Features of pCMV/ <i>myc</i> Plasmids CMV Promoter	
CMV Promoter	
CMV Promoter pCMV/ <i>myc</i> /cyto Map	
CMV Promoter pCMV/ <i>myc</i> /cyto Map pCMV/ <i>myc</i> /nuc Map	
CMV Promoter pCMV/ <i>myc</i> /cyto Map pCMV/ <i>myc</i> /nuc Map pCMV/ <i>myc</i> /mito Map	
CMV Promoter pCMV/ <i>myc</i> /cyto Map pCMV/ <i>myc</i> /nuc Map pCMV/ <i>myc</i> /mito Map pCMV/ <i>myc</i> /ER Map	
CMV Promoter pCMV/ <i>myc</i> /cyto Map pCMV/ <i>myc</i> /nuc Map pCMV/ <i>myc</i> /mito Map pCMV/ <i>myc</i> /ER Map pCMV/ <i>myc</i> /cyto/GFP Map	
CMV Promoter pCMV/ <i>myc</i> /cyto Map pCMV/ <i>myc</i> /nuc Map pCMV/ <i>myc</i> /mito Map pCMV/ <i>myc</i> /ER Map pCMV/ <i>myc</i> /ER Map pCMV/ <i>myc</i> /cyto/GFP Map pCMV/ <i>myc</i> /nuc/GFP Map	
CMV Promoter pCMV/ <i>myc</i> /cyto Map pCMV/ <i>myc</i> /nuc Map pCMV/ <i>myc</i> /mito Map pCMV/ <i>myc</i> /ER Map pCMV/ <i>myc</i> /cyto/GFP Map pCMV/ <i>myc</i> /nuc/GFP Map pCMV/ <i>myc</i> /mito/GFP Map	
CMV Promoter pCMV/ <i>myc</i> /cyto Map pCMV/ <i>myc</i> /nuc Map pCMV/ <i>myc</i> /mito Map pCMV/ <i>myc</i> /ER Map pCMV/ <i>myc</i> /cyto/GFP Map pCMV/ <i>myc</i> /nuc/GFP Map pCMV/ <i>myc</i> /mito/GFP Map pCMV/ <i>myc</i> /mito/GFP Map	
CMV Promoter pCMV/ <i>myc</i> /cyto Map pCMV/ <i>myc</i> /nuc Map pCMV/ <i>myc</i> /mito Map pCMV/ <i>myc</i> /ER Map pCMV/ <i>myc</i> /cyto/GFP Map pCMV/ <i>myc</i> /nuc/GFP Map pCMV/ <i>myc</i> /mito/GFP Map pCMV/ <i>myc</i> /mito/GFP Map pCMV/ <i>myc</i> /ER/GFP Map Accessory Products	

Kit Contents and Storage

Shipping/Storage	All vectors are shipped at room temperature. Upon receipt, store at -20°C.						
Kit Contents	epitope is included with the foll	The pShooter [™] manual for vectors utilizing the CMV promoter and the <i>c-myc</i> pitope is included with the following vectors. All vectors are supplied at a oncentration of 0.5 µg/µL in 10 mM Tris-HCl, 1 mM EDTA, pH 8.0 in a total rolume of 40 µL					
	Vector	Catalog no.					
	pCMV/ <i>myc</i> /cyto pCMV/ <i>myc</i> /cyto/GFP	V820-20					
	pCMV/ <i>myc</i> /nuc pCMV/ <i>myc</i> /nuc/GFP	V821-20					
	pCMV/ <i>myc</i> /mito pCMV/ <i>myc</i> /mito/GFP	V822-20					
	pCMV/ <i>myc</i> /ER pCMV/ <i>myc</i> /ER/GFP	pCMV/ <i>myc</i> /ER V823-20					
			-				

Product Use For research use only. Not intended for any human or animal therapeutic or diagnostic use.

Introduction

Product Overview

Background

The final location of a protein within a cell depends upon 'targeting sequences' encoded within the sequence of a protein. In the simplest case, the lack of a signal directs proteins to the default pathway which is the cytoplasm. The presence of a nuclear localization sequence within a protein or at the N- or C-terminus, directs the protein to the nucleus, while the mitochondrial leader sequence, which is removed upon translocation, directs proteins to the mitochondria. Lastly, proteins destined to be retained in the endoplasmic reticulum (ER) must have an N-terminal signal peptide to direct the protein into the secretory compartment and a C-terminal peptide (SEKDEL) to retain the protein in the ER.

Description The pShooter[™] vectors are a family of vectors designed to express and target your recombinant protein to the desired intracellular location in mammalian cells. They were originally designed to target single-chain antibodies (scFvs) to specific intracellular locations (Persic *et al.*, 1997a; Persic *et al.*, 1997b). These vectors can also be used to target other proteins to different intracellular compartments. The pShooter[™] vectors described in this manual are 5.0 kb expression vectors that express your recombinant protein as a fusion to a targeting sequence (if necessary) and the *c-myc* epitope(Evans *et al.*, 1985). Proteins are targeted to the cytoplasm (no signal), mitochondria (Rizzuto *et al.*, 1992), nucleus (Fisher-Fantuzzi and Vesco, 1988), or endoplasmic reticulum (Munro and Pelham, 1987). Expression is driven by the strong, constitutive immediate-early cytomegalovirus (CMV) promoter (Stenberg et al., 1984; Thomsen et al., 1984). The table below summarizes the above features.

Vector	Desired Location	Targeting Signal
pCMV/ <i>myc</i> /cyto	Cytoplasm	None
pCMV/ <i>myc</i> /nuc	Nucleus	3X (DPKKKRKV)
pCMV/myc/mito	Mitochondria	MSVLTPLLLRGLTGSARRLPVPRAKIHSL
pCMV/ <i>myc</i> /ER	ER	MGWSCIILFLVATATGAHS (N-terminus) + SEKDEL (C-terminus)

In addition, all vectors use the same backbone (pcDNA3) which includes the bovine growth hormone polyadenylation sequence, an f1 origin, the SV40 origin, the neomycin resistance gene, the SV40 late polyadenylation sequence, pUC origin, and the ampicillin resistance gene (Persic et al., 1997b). For more information on all of the above features, see page 16.

Uses of the pShooter[™] Vectors The vectors can be used to direct any recombinant protein to a particular intracellular location. However, success may be dependent on the specific protein used. To help analyze experiments, each vector is supplied with an optimized form of green fluorescent protein (SuperGFP) cloned into the vector as a control. See pages 22–25 for maps of the control vectors. Guidelines for assaying SuperGFP fluorescence are also provided (page 15).

Product Overview, Continued

Uses of the pShooter [™] Vectors, Continued	Targeting Antibodies The pShooter [™] vectors were originally designed for the targeting of scFvs to a specific intracellular location for intracellular immunization (Biocca and Cattaneo, 1995; Cattaneo and Biocca, 1997; Persic et al., 1997a). In this technique, an antibody which is inhibitory for a protein's function can be directed to the same compartment as the protein itself to inactivate the protein.
	The pShooter [™] vectors retain all of the features cited in Persic, et al., 1997a. Some of these features are summarized below.
	• The restriction sites in the multiple cloning site were chosen because they are rare in both human and mouse antibody variable regions and have been removed from the rest of the vector.
	• Vectors consist of a number of functional cassettes flanked by unique restriction sites, with junctional DNA reduced to a minimum.
	• The nuclear localization signal is designed to be at the C-terminus of a scFv, positioned away from the antigen binding site, to reduce potential problems of steric hindrance.
	• scFvs derived from phage antibody libraries can be easily cloned in from compatible vectors (e.g. pHEN; Hoogenboom <i>et al.</i> , 1991(Hoogenboom et al., 1991)) or amplified incorporating compatible ends.
	For more information on cloning antibodies and antibody domains, refer to Persic, <i>et al.</i> , 1997a. For an example in which these vectors have been used in intracellular immunization to inhibit function within a cell, see Gargano and Cattaneo, 1997. (Gargano and Cattaneo, 1997)

Methods

General Guidelines

Introduction	 This section contains general information on propagation and maintenance of the pShooter[™] vectors and guidelines for <i>E. coli</i> transformation. Additional information is provided on the following pages: To develop a cloning strategy, refer to the multiple cloning sites on pages 5–9. Maps of the targeting vectors are on pages 18–21. Maps of the control vectors are on pages 22–25. Nucleotide sequences of any of the vectors described in this manual may be obtained by downloading them from <u>www.lifetechnologies.com/support</u> or by calling Technical Support (see page 27). 		
General Molecular Biology Techniques	For help with DNA ligations, <i>E. coli</i> transformations, restriction enzyme analysis, purification of single-stranded DNA, DNA sequencing, and DNA biochemistry, refer to <i>Molecular Cloning: A Laboratory Manual</i> (Sambrook et al., 1989) or <i>Current Protocols in Molecular Biology</i> (Ausubel <i>et al.</i> , 1994).		
<i>E. coli</i> Strain	Many <i>E. coli</i> strains are suitable for the growth of this vector. We recommend that you propagate vectors containing inserts in <i>E. coli</i> strains that are recombination deficient (<i>rec</i> A) and endonuclease A deficient (<i>end</i> A). For your convenience, TOP10F ⁻ is available as chemically competent or electrocompetent cells (see page 26 for ordering).		
<i>E. coli</i> Transformation	You may use any method you wish to prepare competent <i>E. coli</i> for transformation. Select transformants on LB plates containing $50-100 \mu g/mL$ ampicillin.		

Continued on next page

General Guidelines, Continued

Propagating and Maintaining Plasmids	 To propagate and maintain any of the pShooter[™] vectors, we recommend that you transform the plasmids into <i>E. coli</i> and prepare glycerol stocks for long-term storage. Transform plasmids into <i>E. coli</i> as follows: Use the supplied stock solution in TE, pH 8.0 to transform a <i>recA</i>, <i>endA E. coli</i> strain like TOP10F', INVαF', DH5αF', or equivalent. Select transformants on LB plates containing 50–100 µg/mL ampicillin. Select a transformant and grow a log phase culture for a glycerol stock. Prepare glycerol stocks by mixing 0.85 mL of the log phase culture with 0.15 mL of sterile glycerol. Transfer the resulting solution to a cryovial and store at –80°C.
Cloning into the pShooter [™] Vectors	Diagrams for each of the multiple cloning sites are provided on pages 5–9 to help you clone your gene of interest in frame with the desired targeting signal and/or the <i>c-myc</i> epitope for detection. For help with PCR, restriction digests, and ligations, refer to general molecular biology texts (Ausubel et al., 1994; Sambrook et al., 1989). Transform ligation mixtures into competent <i>E. coli</i> as using the method of choice, and plate the cells on LB plates containing 50–100 µg/mL ampicillin.
	Select 10 to 20 transformants and analyze your construct by restriction enzyme digestion or sequencing to ensure that your insert is cloned in the correct orientation. If you wish to sequence your insert, use the pCMV Forward and BGH Reverse primers (see page 26 for ordering) to confirm that your gene is correctly fused to the targeting signal and/or the <i>c-myc</i> epitope.

Cloning into pCMV/myc/cyto

Special Considerations	Since the cytoplasm is the default location for translated proteins, this vector contains no targeting signals. One thing to note: The ATG in the <i>Nco</i> I site is part of a Kozak consensus sequence (ANN <u>ATG</u> G)(Kozak, 1987; Kozak, 1990). If you can clone in frame or flush with this ATG, it will facilitate expression of your protein. Note that you may have to use PCR to clone your gene in frame or flush with the ATG and/or the <i>c-myc</i> epitope. Note that the <i>c-myc</i> epitope will add ~1.5 kDa to your protein. If you do not wish to fuse your protein to the <i>c-myc</i> epitope, remember to include a stop codon.
pCMV/ <i>myc</i> /cyto MCS	Restriction sites are labeled to indicate the cleavage site. For more information on the CMV promoter, see page 17. The multiple cloning site has been confirmed by sequencing and functional testing.
480 AGTTTGTTTT	GGCACCAAAA TCAACGGGAC TTTCCAAAAT GTCGTAACAA CTCCGCCCCA
	TATA Start of Transcription TGGGCGGTAG GCGTGTACGG TGGGAGGTCT ATATAAGCAG AGCTTTCTGG V Forward priming site
600 CTAACTAGAG	Nco I AACCCGTGGC CACC ATG GCC CAG GTG CAG CTG CAG GTC GAC CTC GAG Met Ala Gln Val Gln Leu Gln Val Asp Leu Glu
	Not I myc epitope
	G GCG GCC GCA GAA CAA AAA CTC ATC TCA GAA GAG GAT CTG AAT GGG g Ala Ala Ala Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn Gly
	BGH Reverse priming site
711 GCC GCA TA Ala Ala **	g tctagaagct cgctgatcag cctcgactgt gccttctagt tgccagccat *
770 CTGTTGTTTG	CCCCTCCCCC GTGCCTTCCT TGACCCTGGA AGGTGCCACT CCCACTGTCC
BGH polyaden	ylation signal
830 TTTCCTAATA	AAATGAGGAA ATTGCATCGC ATTGTCTGAG TAGGTGTCAT TCTATTCTGG

Cloning into pCMV/*myc*/nuc

Special Considerations	The ATG in the <i>Nco</i> I site is part of a Kozak consensus sequence (ANN <u>ATG</u> G) (Kozak, 1987; Kozak, 1990). If you can clone in frame or flush with this ATG, it will facilitate expression of your protein. To efficiently target your protein to the nucleus, the nuclear localization signal (NLS) from SV40 large T antigen has been triplicated and placed downstream of the multiple cloning site for C-terminal fusion to your protein (Fisher-Fantuzzi and Vesco, 1988). Note that this signal will not be removed from your protein upon entry to the nucleus. If you clone in-frame with the NLS you will also be in frame with the <i>c-myc</i> epitope. The NLS and the <i>c-myc</i> epitope will add ~5 kDa to your protein. Note that you may have to use PCR to facilitate in-frame cloning with the ATG (if desired) and the NLS.
pCMV/ <i>myc</i> /nuc MCS	Restriction sites are labeled to indicate the cleavage site. For more information on the CMV promoter, see page 17. The multiple cloning site has been confirmed by sequencing and functional testing.
480 AGTTTG	TTTT GGCACCAAAA TCAACGGGAC TTTCCAAAAT GTCGTAACAA CTCCGCCCCA
540 TTGACG	CAAT TATA Start of Transcription CAAA TGGGCGGTAG GCGTGTACGG TGGGAGGTCT ATATAAGCAG AGCTTTCTGG pCMV Forward priming site Nco I
600 CTAACT	AGAG AACCCACTGC TTACTGGCAC GTGGAAATTA ATACGACGTG GCCACC ATG GCC Met Ala
	Pst I Sal I Xho I NLS *1
662 CAG GI	G CAG CTG CAG GTC GAC CTC GAG ATC AAA CGG GCG GCC GCA GAT CCA AAA
Gln Va	l Gln Leu Gln Val Asp Leu Glu Ile Lys Arg Ala Ala Ala Asp Pro Lys
	NLS #2 NLS #3
	G AGA AAG GTA GAT CCA AAA AAG AAG AGA AAG GTA GAT CCA AAA AAG AAG 75 Arg Lys Val Asp Pro Lys Lys Lys Arg Lys Val Asp Pro Lys Lys Lys
2,5 1	
	G GTA GAT ACG GCC GCA GAA CAA AAA CTC ATC TCA GAA GAG GAT CTG AAT
	rs Val Asp Thr Ala Ala Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn
	S VAL ASP Thr Ala Ala Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn BGH Reverse priming site C GCA TAG TCTAGAAGCT CGCTGATCAG CCTCGACTGT GCCTTCTAGT TGCCAGCCAT a Ala ***
Gly Al	BGH Reverse priming site C GCA TAG TCTAGAAGCT CGCTGATCAG CCTCGACTGT GCCTTCTAGT TGCCAGCCAT
Gly Al 886 CTGTTG	BGH Reverse priming site C GCA TAG TCTAGAAGCT CGCTGATCAG CCTCGACTGT GCCTTCTAGT TGCCAGCCAT a Ala ***

Cloning into pCMV/myc/mito

Special Considerations		sequence. The into the mitoc His-Ser-Leu) w known about a sequence that gene flush wit primer to inclu- targeting seque This vector do <i>Nco</i> I site conta- reinitiation do If you wish to epitope. Note	protein to the mitochondrial matrix will be left at the mitochondrial t will produce a th the last leucin ude sequence fr ence. wes not have an ains an ATG, re pes not occur do include the <i>c-myc</i> es so your protein	targeting c; howeve e N-termi argeting native pr ne codon, rom the u <i>Nco</i> I site emoval of wnstream <i>nyc</i> epitope w	sequence is er, at least fo inus of your sequences to otein upon use PCR ar nique <i>Bss</i> H in the mult this site ins n of the mitto pe, remembe ill add ~1.5	s removed up pur addition protein. Not o provide a translocation ad design th II site to the iple cloning sures that tra ochondrial t er to clone ir kDa to your	pon trar al amino ot enougi consension. To clo e 5' end e end of t site. Sino argeting a-frame v protein	slocat acids h is is ne you of you he ce the seque vith th . If you	ion (Ile- ur ur ence. ne u
pCMV/ MCS	/ <i>myc</i> /mito	Restriction sites on the CMV proby sequencing	omoter, see pag	ge 17. The	-				
480	AGTTTGTTTT	GGCACCAAAA	TCAACGGGAC	TTTCCAA	AAT GTCGI	TAACAA CT	CCGCCC	CA	
540	CAA	T TGGGCGGTAG	GCGTGTACGG	TGGGAGG	TATA		t of Transc	\rightarrow	
	pCMV	Forward priming s		10001100					
600	-		site	GTGACC		GTC CTG A	CG CCG	CTG	
600	-	Forward priming s	site	GTGACC	ATG TCC (Met Ser \	GTC CTG A	CG CCG hr Pro	CTG	
600 660	CTAACTAGAG CTG CGG GGG	Forward priming s	site TTACTGGCAC Mitochondr C TCG GCC C	GTGACC	ATG TCC (Met Ser \ gsignal CTC CCA (GTC CTG A Val Leu T BssH I GTG CCG C Val Pro A:	CG CCG hr Pro I GC GCC	CTG Leu AAG Lys	Leu ATC Ile
	CTAACTAGAG CTG CGG GGG Leu Arg Gly	Forward priming s AACCCACTGC C TTG ACA GG Z Leu Thr Gl Pst I Sal I G CTGCAGGTCG	site TTACTGGCAC Mitochondr C TCG GCC Co y Ser Ala A: Xho I	GTGACC	ATG TCC (Met Ser V g signal CTC CCA (Leu Pro V <i>Not</i> I	GTC CTG A Val Leu T BssH I GTG CCG C Val Pro A Putat GCA GAA C	CG CCG hr Pro I GC GCC rg Ala ive Cleava <i>myc</i> epito	CTG Leu AAG Lys ge Site pe CTC	Leu ATC Ile ATC
660	CTAACTAGAG CTG CGG GGG Leu Arg Gly CAT TCG TTG His Ser Leu TCA GAA GAG	Forward priming s AACCCACTGC C TTG ACA GG Z Leu Thr Gl Pst I Sal I G CTGCAGGTCG	site TTACTGGCAC <u>Mitochondr</u> C TCG GCC CO y Ser Ala A: <u>Xho</u> I ACCTCGAGAT	GTGACC ial targeting GG CGG rg Arg CAAACG	ATG TCC (Met Ser V g signal CTC CCA (Leu Pro V Not I GGCG GCCC	GTC CTG A Val Leu T BssH I GTG CCG C Val Pro A Putat GCA GAA C Glu G	CG CCG hr Pro I GC GCC rg Ala ive Cleava <i>myc</i> epito AA AAA ln Lys BC	CTG Leu AAG Lys ge Site pe CTC Leu EH Rev	Leu ATC Ile ATC Ile erse
660 714	CTAACTAGAG CTG CGG GGG Leu Arg Gly CAT TCG TTG His Ser Leu TCA GAA GAG Ser Glu Glu	Forward priming s AACCCACTGC TTG ACA GG Leu Thr Gl Pst I Sal I G CTGCAGGTCG	site TTACTGGCAC (Mitochondr C TCG GCC C(y Ser Ala A: Xho I ACCTCGAGAT I GGG GCC GC n Gly Ala Al	GTGACC ial targeting GG CGG rg Arg CAAACG CA TAG T La ***	ATG TCC (Met Ser V g signal CTC CCA (Leu Pro V Not I GGCCG GCCC ICTAGAAGC	GTC CTG A Val Leu T BssH I GTG CCG C Val Pro A Putat GCA GAA C. Glu G T CGCTGAT	CG CCG hr Pro I GC GCC rg Ala ive Cleava <i>myc</i> epitc AA AAA ln Lys BC CAG CC	CTG Leu AAG Lys ge Site pe CTC Leu H Rev ICGAC	Leu ATC Ile ATC Ile erse
660 714 774	CTAACTAGAG CTG CGG GGG Leu Arg Gly CAT TCG TTG His Ser Leu TCA GAA GAG Ser Glu Glu	Forward priming s AACCCACTGC C TTG ACA GG Z Leu Thr Gl Pst I Sal I G CTGCAGGTCG C GAT CTG AA ASP Leu AS	site TTACTGGCAC (Mitochondr C TCG GCC C(y Ser Ala A: Xho I ACCTCGAGAT I GGG GCC GC n Gly Ala Al	GTGACC ial targeting GG CGG rg Arg CAAACG CA TAG T La *** CCCCTCC	ATG TCC (Met Ser V g signal CTC CCA (Leu Pro V Not I GGCG GCC(FCTAGAAGC	GTC CTG A Val Leu T BssH I GTG CCG C Val Pro A Putat GCA GAA C. Glu G T CGCTGAT	CG CCG hr Pro I GC GCC rg Ala ive Cleava <i>myc</i> epitc AA AAA ln Lys BC CAG CC	CTG Leu AAG Lys ge Site pe CTC Leu H Rev ICGAC	Leu ATC Ile ATC Ile erse

894 AGGTGCCACT CCCACTGTCC TTTCCTAATA AAATGAGGAA ATTGCATCGC ATTGTCTGAG

Cloning into pCMV/myc/ER

Retaining in the ER	To <u>direct and retain</u> your protein to the ER, clone in frame with the <u>second</u> exon of signal peptide <u>and</u> the <i>c-myc</i> epitope (see page 9). The signal peptide contains an intron which when spliced out, puts the peptide in frame with your protein. The signal peptide is removed after the serine codon upon translocation into the ER and the protein is retained because of the SEKDEL peptide which is in frame with, and C-terminal to, the <i>c-myc</i> epitope. To clone your gene flush with the serine codon in the signal peptide, use PCR and design the 5' end of your primer to include sequence from the unique <i>Bss</i> H II site to the end of the signal peptide (GGC GCG CAC TCC). refer to the diagram on page 9.
	Note : The signal peptide is from a mouse V_h chain (Kabat et al., 1987) and contains an intron. The presence of introns in signal peptides is reputed to increase expression levels.
Secretion	If you wish to secrete your protein, include the native stop codon of your gene of interest. This will prevent fusion with the <i>c-myc</i> epitope and the SEKDEL ER retention signal. Note that if a protein is normally secreted, then fusing the protein to the ER signal peptide (and omitting the ER retention signal) should allow secretion. However, proteins that are not normally secreted may be nonspecifically retained in the ER. This is very much protein-dependent.
	Note : You will not be able to detect your protein with antibody to the <i>c-myc</i> epitope.
Other Considerations	This vector does not have an <i>Nco</i> I site in the multiple cloning site. Since the <i>Nco</i> I site contains an ATG, removal of this site insures that translation reinitiation does not occur downstream of the ER signal peptide.
	Note that the C-terminal peptide containing the <i>c-myc</i> epitope and the SEKDEL peptide will add \sim 2 kDa to your protein.
	Continued on next page

Cloning into pCMV/myc/ER, Continued

pCMV/ <i>n</i> MCS	ıyc/ER	on the CMV pr	s are labeled to indi comoter, see page 17 equencing and fund	7. The multiple clo	ite. For more information ning site has been	
480	AGTTTGTTTT	GGCACCAAAA	TCAACGGGAC TTTC	CAAAAT GTCGTA	ACAA CTCCGCCCCA	
540				TATA GAGGTCT ATATAA	Start of Transcription	
600	CTAACTAGAG	AACCCACTGC	TTACTGGCAC GTG	GAAATTA ATACGAG	NcoI CGTG GCCACC ATG GGA TO Met Gly Ti	
		ER signal p	eptide		intron	
665			C TTG GTA GCA A e Leu Val Ala 1		TAAGGGGT TAACAGTAGC Bs:	sH II
721	AGGCTTGAGG	TCTGGACATA	TATATGGGTG ACAA	TGACAT CCACTT	IGCC TTTCTCTCCA CA GGC	
786		C CAG GTC CA	n Leu Gln Val A		<i>Not</i> I C AAA CGG GCG GCC GCA E Lys Arg Ala Ala Ala	
840		<i>myc</i> epitope	A GAA GAG GAT (ER retention signal C GCA AGC GAG AAG GAC a Ala Ser Glu Lys Asp	
894	GAG CTG TA Glu Leu **			3H Reverse priming sid	e TAGT TGCCAGCCAT	
953		CCCCTCCCCC	GTGCCTTCCT TGAC	CCTGGA AGGTGCO	CACT CCCACTGTCC	
1013			ATTGCATCGC ATTO	TCTGAG TAGGTG	CAT TCTATTCTGG	

Transfecting Mammalian Cells

Introduction	General information is provided below for transfection of mammalian cells with the pShooter [™] vectors. Positive control vectors are supplied with each vector to optimize transfection conditions for your cell line. pShooter [™] vectors have been tested in CHO and COS cells. A sample transfection is provided on page 11 for CHO cells.
Preparing the Plasmid	Once you have confirmed that your gene is in the correct reading frame, prepare plasmid DNA for transfection. Plasmid DNA for transfection into eukaryotic cells must be very clean and free from phenol and sodium chloride. Contaminants will kill the cells and salt will interfere with lipids decreasing transfection efficiency. We recommend isolating DNA using the PureLink [®] MidiPrep Kit (up to 150 µg, see page 26 for ordering) or CsCl gradient centrifugation.
Methods of Transfection	For established cell lines (e.g. COS, CHO), consult original references or the supplier of your cell line for the optimal method of transfection. It is recommended that you follow exactly the protocol for your cell line. Pay particular attention to medium requirements, when to pass the cells, and at what dilution to split the cells. Further information is provided in <i>Current Protocols in Molecular Biology</i> .
	Methods for transfection include calcium phosphate (Chen and Okayama, 1987; Wigler et al., 1977), lipid-mediated (Felgner et al., 1989; Felgner and Ringold, 1989) and electroporation (Chu et al., 1987; Shigekawa and Dower, 1988). We offer a wide variety of transfection reagents including Lipofectamine [®] 2000 for mammalian transfection (see page 26 for ordering). For more information, call Technical Support (see page 27) or visit <u>www.lifetechnologies.com</u> .
Expressing Your Fusion Protein	No matter which method of transfection you elect to use, it is very important to perform a time course to optimize expression and targeting of your particular protein. Be sure to transfect enough cells to collect time points, particularly if you are using immunofluorescence or a functional assay.
Methods of Detection	There are a variety of methods for detection, depending on what protein you are expressing and targeting.
	• Visual Method . If you want to be sure that your protein is targeting to the correct location, use immunofluorescence (see page 12).
	• Functional Assay . If you are targeting a protein that inhibits or alters the function of another protein, you may have a visual assay (e.g. changes in cell morphology) or an enzymatic assay.

Continued on next page

Transfecting Mammalian Cells, Continued

Stable Transfection	For stable transfection, the pShooter [™] vectors contain the resistance factor to G418. G418 blocks protein synthesis in mammalian cells by interfering with ribosomal function. It is an aminoglycoside, similar in structure to neomycin, gentamycin, and kanamycin. Expression of the bacterial aminoglycoside phosphotransferase gene (APH), derived from Tn5, in mammalian cells results in detoxification of G418 (Southern and Berg, 1982).			
G418 (Neomycin) Selection	G418 is available for information). Use as		chnical Support for ordering	
Guidelines	• Prepare G418 in	a buffered solution (e	e.g. 100 mM HEPES, pH 7.3).	
	• Test varying concentrations of G418 on your cell line to determine the concentration that kills your cells (kill curve). Cells differ in their susceptibility to G418.			
	• Use 100 to 1000 μg/mL of G418 in complete medium.			
	• Calculate concentration based on the amount of active drug (check the lot label).			
	ence of lethal doses of G418, so the come apparent. Complete selection can ive medium.			
Linearizing Vectors for Stable TransfectionWhile linearizing a plasmid is not necessary to obtain stable transfector ensure that the vector does not integrate in a way that disrupts the g interest. The table below lists possible restriction enzymes you could linearize your particular construct.			n a way that disrupts the gene of	
	Vector	Sites	Location	

Vector	Sites	Location	
All vectors	Pvu I, Sca I	Ampicillin resistance gene	
	Kpn I, EcoR I	5' end of CMV promoter	

Detecting Fusion Proteins

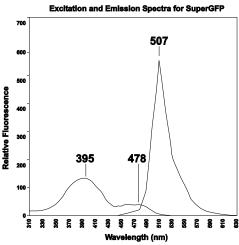
Introduction	To ensure that your protein is targeted correctly, it is important to visualize its cellular location. Inclusion of the <i>c-myc</i> epitope allows detection by immunofluorescence although you can use antibody to your own protein. A basic protocol is included for your convenience. Other protocols may be appropriate. Antibodies to the <i>c-myc</i> epitope are available for purchase and can be used to detect expression of your fusion protein by immunofluorescence (see below) or western blot. Note that the <i>c-myc</i> epitope will add an additional 1.5 kDa to your protein. The table below describes the antibodies available and ordering information. The amount supplied is sufficient for 25 westerns and 2–3 immunofluorescence experiments.				
Detecting Fusion Proteins					
	Antibody	Purpose	Catalog no.		
	Anti-myc	Detects 10 amino acid epitope derived from the <i>c-myc</i> protein (Evans <i>et al.</i> , 1985)	R950-25		
	Anti-myc-HRP				
Basic Immuno- fluorescent Labeling of Cells	 Antibodies can be used for immunofluorescence using standard techniques (Ausubel et al., 1994). A basic protocol is supplied below for adherent cells. For more information, refer to Chapter 14.6 in <i>Current Protocols in Molecular Biology</i>. 1. Cool the cells on ice. (Culture cells in a 3- to 5-cm dish. Cells should be confluent or as close to confluent as possible). 2. Aspirate off the culture medium and wash the cells with 4°C PBS. 3. Remove PBS and fix cells for either 30 minutes in 2% paraformaldehyde/0.1% Triton X-100 or 15 minutes in 100% methanol at -20°C. Note: Be sure to wash the cells thoroughly with methanol or they will freeze. 4. Remove fixative and wash the cells twice with cold PBS (~5 minutes/wash). 5. Dilute primary antibody in PBS to a final concentration of 5 to 10 µg/mL. Prepare enough antibody to cover cells. 6. Centrifuge antibody for 2 minutes at 13,500 × g (4°C) to precipitate any particulate matter. 7. Carefully layer primary antibody in PBS to a final concentration of 5 to 10 µg/mL. 9. Dilute labeled secondary antibody in PBS to a final concentration of 5-10 µg/mL. Prepare enough antibody for 2 minutes at 13,500 × g (4°C) to precipitate any particulate matter. 10. Centrifuge antibody for 2 minutes at 13,500 × g (4°C) to precipitate any particulate matter. 11. Layer secondary antibody over cells and incubate for 1 hour at 4°C. 12. Remove antibody and wash four times with cold PBS (~5 minutes/wash). Store cells in PBS. Analyze cells by fluorescence immediately; or, cover dishes, wrap in aluminum foil, and refrigerate. Be sure to examine preparations within 24 hours or the fluorescence will fade. 				

Detection of Fusion Proteins, Continued

Patterns of Expression	Transformation of the vector expressing your gene of interest or the control vectors should give the following expression patterns using immunofluorescence or fluorescence (SuperGFP).			
	Cytoplasmic Expression : A number of different distributions may be observed. Some cells will show a typical diffuse pattern throughout the cytoplasm while others will show a puntiform distribution. In cases where greater accumulation of intracellular protein is seen, a "donut-like" pattern may also be seen. Examples of these cytoplasmic distributions are found in Persic, et al, 1997a. We have only observed the typical diffuse pattern with the GFP control.			
	Nuclear expression : Recombinant proteins should be primarily localized to the nucleus.			
	Mitochondrial expression : A punctate pattern will be apparent indicating proper targeting to the mitochondria.			
	ER expression : The ER is a reticular network found throughout the cell and normally appears as a vesicular structure in immunofluorescence. In some cases brighter areas will be visible indicating movement into the Golgi apparatus, located near the nucleus. This can be confirmed by staining with rhodamine-conjugated wheat germ lectin (Virtanen et al., 1980). The ER retention signal allows rescue from the Golgi apparatus so in most cases, ER-targeted proteins should only appear minimally in the Golgi.			
	If you have trouble expressing and targeting your protein, read the section on the positive control vectors below and the Troubleshooting section on page 14.			
Using the Positive Controls	 Each of the pShooter[™] vectors described in this manual is also provided with a control vector expressing SuperGFP. These vectors may be used to: Optimize transfection conditions for your cell line Confirm that the targeting signals function properly in your cell line For more information on the control vectors, see pages 22–25. For information on detection of SuperGFP, see page 15. 			

Troubleshooting

Problem	Reason	Solution
No targeting observed	Low expression levels	Could be a variety of reasons. Check for expression by western blot. You may have to optimize transfection conditions (use the SuperGFP control vector to evaluate transfection). Many of the other solutions below may help.
	No expression of your protein	Check for expression by western blot. If your protein is not expressed, sequence your construct to confirm that it is in frame with the targeting sequence.
	Cell line may not recognize targeting signal	Check for targeting using the appropriate GFP control vector.
Non-specific labeling The <i>c-myc</i> tag is derived from an endogenous protein (<i>c-myc</i>)		Transfect with the empty vector (negative control) and assay for immunofluorescence. You may need to use a different tag or use antibody to your protein.
Pattern of cytoplasmic expression is not diffuse	Protein is not very soluble or is normally expressed in another compartment	Assay earlier after transfection. Targeting proteins to a compartment other than the normal compartment may change disulfide bond formation and solubility characteristics.
Difficulty expressing protein in stable clones	Protein is toxic when redirected to another compartment	Selection of stable clones may lead to down regulation of the protein. Try a different promoter for expression.
	Continuous culture may lead to loss of protein expression	Remember to prepare an early set of back-up stocks.


Some proteins (e.g. antibodies expressed intracellularly) may give a very good immunofluorescent signal, but may not be detectable in a western blot. This may be due to aggregation and/or precipitation of the antibody, so be sure your SDS-PAGE samples are well solubilized.

Detection of GFP

Introduction	SuperGFP has been optimized for expression in <i>E. coli</i> and mammalian cells. Fluorescent yield is >40-fold over wild-type GFP, yet it has the same excitation maxima (395 nm and 478 nm for primary and secondary excitation) and emission maxima (507 nm). Guidelines for detection and optimization of expression are described below.
Construct of the Control Vectors	The control vectors were synthesized by amplifying a 716 bp fragment from $p\alpha$ GFP (Crameri et al., 1996) using oligomers that introduced a <i>Pst</i> I site at the 5′ end and a <i>Not</i> I site at the 3′ end of SuperGFP. In addition each of the oligomers was specifically designed to clone in frame with the targeting sequence and/or the <i>c-myc</i> epitope.
Detecting Fluorescence	To detect fluorescent cells, it is important to pick the best filter set to optimize detection. The primary excitation peak of SuperGFP is at 395 nm. There is a secondary excitation peak at 478 nm. Excitation at these wavelengths yields a fluorescent emission peak with a maximum at 507 nm (see below).

Use of the best filter set will ensure that the optimal regions of the SuperGFP spectra are excited and passed (emitted). For example, the FITC filter set that we use excites SuperGFP with light from 460 to 490 nm, which covers the secondary excitation peak. The filter set passes light from 515 to 550, allowing detection of most of the GFP fluorescence. Standard FITC filters easily suit most purposes; however, it is important to keep in mind that fluorescence will be affected by the sample assayed and the filter you choose.

For general information about GFP fluorescence and detection, refer to Current Protocols in Molecular Biology.

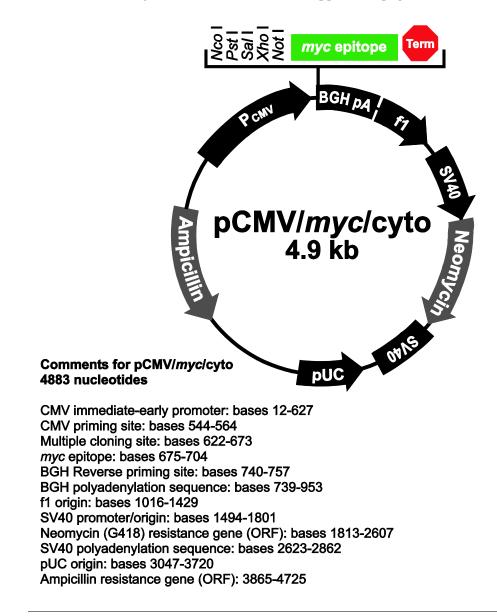
Detecting Transfected Cells	After transfection, allow the cells to recover for 24 to 48 hours before assaying for fluorescence. Note : Most media fluoresce because of the presence of riboflavin (Zylka and Schnapp, 1996) and may interfere with detection of SuperGFP fluorescence. Medium can be removed and replaced with PBS to alleviate this problem.
	Estimate the total number of cells before assaying for fluorescence. Then check your plate for fluorescent cells. You can use fluorescence to estimate transfection efficiency and normalize any subsequent assay for your gene of interest.

Optimizing Expression It is recommended that a time course be performed to determine the optimal time to assay for transient expression of GFP. Optimal times may vary from 12 to 96 hours from the time of transfection depending on cell line.

Appendix

Features of pCMV/myc Plasmids

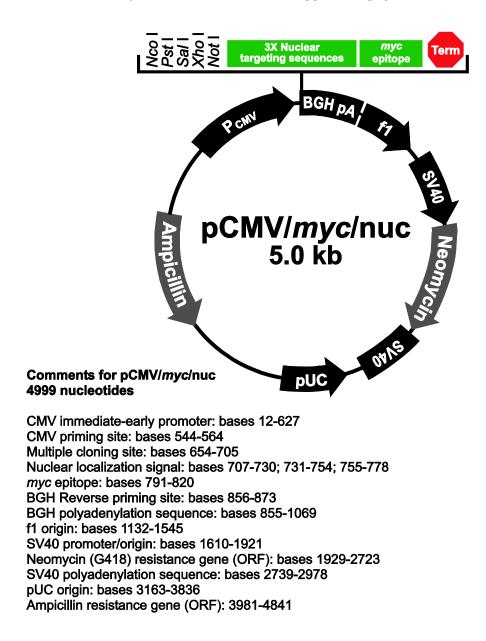
TableThe table below summarizes the features of the pShooter [™] vectors. These vectors were derived from pcDNA3. Features that are unique to one vector noted.	are
--	-----


Feature	Benefit		
Immediate-early CMV promoter	Permits efficient, high-level expression of your recombinant protein (Andersson et al., 1989; Boshart et al., 1985; Nelson et al., 1987). For more detailed information on this promoter, see page 17.		
Mitochondrial targeting sequence pCMV/ <i>myc</i> /mito only	Allows efficient targeting to the mitochondria. Isolated from subunit VIII of human cytochrome c oxidase (Rizzuto et al., 1992).		
ER signal peptide pCMV/ <i>myc</i> /ER only	Directs the protein of interest to the ER for retention in the ER or secretion. This is the signal peptide from a mouse V_h chain (Kabat et al., 1987).		
Multiple cloning site	Allows insertion of your gene.		
Nuclear targeting sequence pCMV/ <i>myc</i> /nuc only	Permits efficient targeting of your protein to the nucleus. Sequence is triplicated to ensure proper localization. Isolated from SV40 large T antigen (Fisher-Fantuzzi and Vesco, 1988).		
<i>c-myc</i> epitope (Glu-Gln-Lys-Leu-Ile-Ser-Glu- Glu-Asp-Leu)	Allows detection of your recombinant protein by immunofluorescence with the Anti- <i>myc</i> Antibody (see page 26) (Evans <i>et al.</i> , 1985)		
ER retention signal pCMV/ <i>myc</i> /ER only	Permits retention of your protein in the ER (Munro and Pelham, 1987).		
TAG termination codon	For efficient termination of translation.		
Bovine growth hormone (BGH) polyadenylation signal	Efficient transcription termination and polyadenylation of mRNA (Goodwin and Rottman, 1992).		
f1 origin	Allows rescue of single-stranded DNA.		
SV40 early promoter and origin	Allows efficient, high-level expression of the neomycin resistance gene and episomal replication in cells expressing SV40 large T antigen (i.e. COS). <i>Nco</i> I site removed by site-directed mutagenesis.		
Neomycin (G418) resistance gene	Selection of stable transfectants in mammalian cells (Southern and Berg, 1982). Tn5 sequence removed and the Kozak sequence improved by PCR at the 5 [°] end of the ORF. <i>Nco</i> I, <i>Pst</i> I, and <i>Bss</i> H II sites removed by site-directed mutagenesis.		
SV40 polyadenylation signal	Efficient transcription termination and polyadenylation of mRNA.		
pUC origin	High-copy number replication and growth in <i>E. coli. Apa</i> L I site removed by site-directed mutagenesis.		
Ampicillin resistance gene (β-lactamase)	Selection of vector in <i>E. coli. Apa</i> L I site removed by site-directed mutagenesis.		

Descriptior	Description The diagram below shows all the features of the CMV promoter used in the pShooter [™] vectors (Persic et al., 1997a). The original sequence has been changed to remove the <i>Mlu</i> I, <i>Spe</i> I, <i>Sac</i> I, <i>Sna</i> B I and <i>Nco</i> I restriction sites. In addition, <i>Eco</i> R I and <i>Pml</i> I were introduced by PCR. The CMV promoter can be excised using <i>Kpn</i> I or <i>Eco</i> R I and <i>Pml</i> I or <i>Nco</i> I.					
	Kpn I EcoR I	5' end of CM	V promoter			
1	-	CACATTGATT	ATTGAGTAGT	TATTAATAGT	AATCAATTAC	GGGGTCATTA
61	GTTCATAGCC	CATATATGGA		5' end of enhanc ACATAACTTA	er region CGGTAAATGG	CCCGCCTGGC
121	TGACCGCCCA	ACGACCCCCG	CCCATTGACG	TCAATAATGA	CGTATGTTCC	CATAGTAACG
181	CCAATAGGGA	CTTTCCATTG	ACGTCAATGG	GTGGAGTATT	TACGGTAAAC	TGCCCACTTG
241	GCAGTACATC	AAGTGTATCA	TATGCCAAGT	ACGCCCCCTA	TTGACGTCAA	TGACGGTAAA
301	TGGCCCGCCT	GGCATTATGC	CCAGTACATG	ACCTTATGGG	ACTTTCCTAC	TTGGCAGTAC
361	ATCTACGGTT	AGTCATCGCT	ATTACCATAG	TGATGCGGTT	TTGGCAGTAC	ATCAATGGGC
421	GTGGATAGCG	GTTTGACTCA	CGGGGATTTC	CAAGTCTCCA	CCCCATTGAC	GTCAATGGGA
3' e	nd of enhancer reg	I				
481	GTTTGTTTTG	GCACCAAAAT	CAACGGGACT	TTCCAAAATG	TCGTAACAAC	TCCGCCCCAT
	CAAT	<u></u>]	TATA 3' end	of CMV promoter
541	TGACGCAAAT	GGGCGGTAGG	CGTGTACGGT	GGGAGGTCTA	TATAAGCAGA	GCTTTCTGGC
	putative transcriptional start $Pml I$ Nco I					
601	TAACTAGAGA	ACCCACTGCT	TACTGGCACG	TGGCCACC		

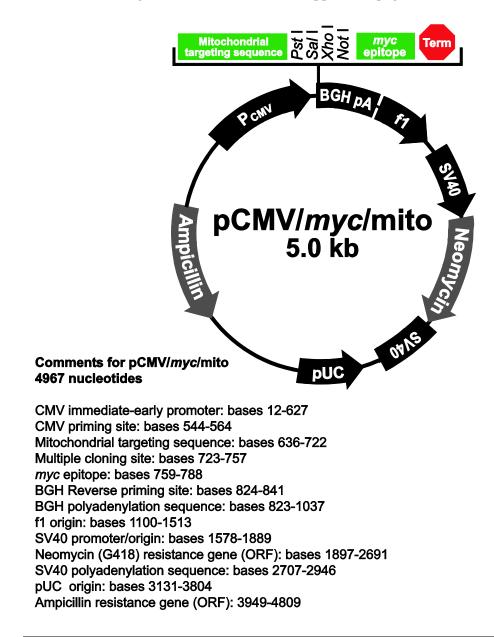
pCMV/myc/cyto Map

Мар


The figure below summarizes the features of pCMV/*myc*/cyto. The nucleotide sequence for pCMV/*myc*/cyto is available for downloading from <u>www.lifetechnologies.com</u> or from Technical Support (see page 27).

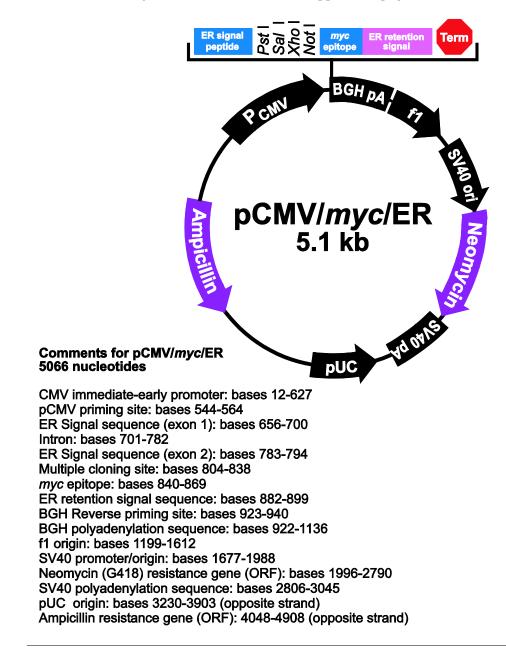
pCMV/myc/nuc Map

Мар


The figure below summarizes the features of pCMV/*myc*/nuc. The nucleotide sequence for pCMV/*myc*/nuc is available for downloading from <u>www.lifetechnologies.com</u> or from Technical Support (see page 27).

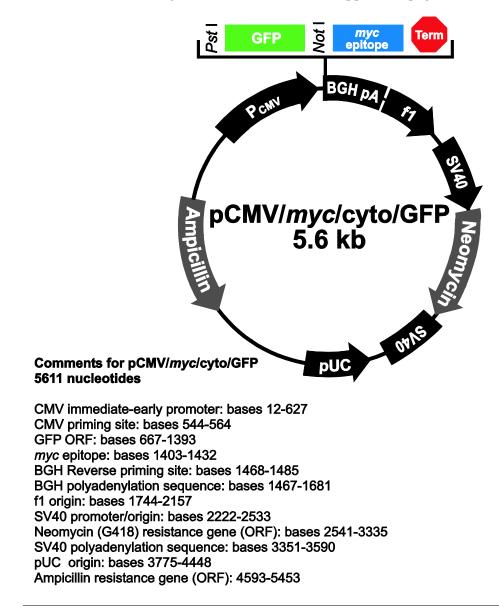
pCMV/myc/mito Map

Мар


The figure below summarizes the features of pCMV/*myc*/mito. The nucleotide sequence for pCMV/*myc*/mito is available for downloading from <u>www.lifetechnologies.com</u> or from Technical Support (see page 27).

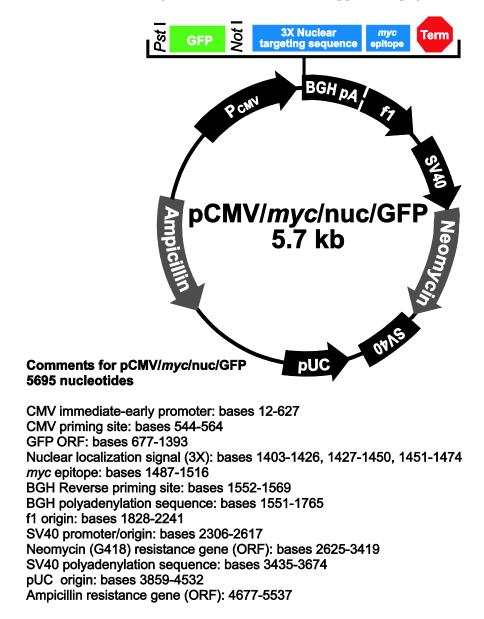
pCMV/myc/ER Map

Мар


The figure below summarizes the features of pCMV/*myc*/ER. The nucleotide sequence for pCMV/*myc*/ER is available for downloading from <u>www.lifetechnologies.com</u> or from Technical Support (see page 27).

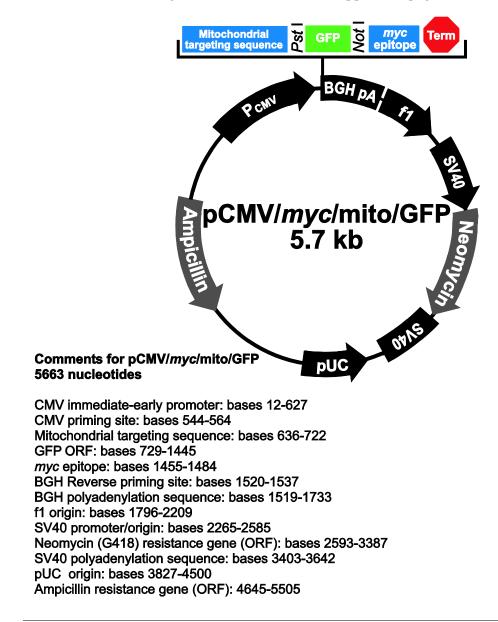
pCMV/myc/cyto/GFP Map

Мар


The figure below summarizes the features of pCMV/*myc*/cyto/GFP. The nucleotide sequence for pCMV/*myc*/cyto/GFP is available for downloading from <u>www.lifetechnologies.com</u> or from Technical Support (see page 27).

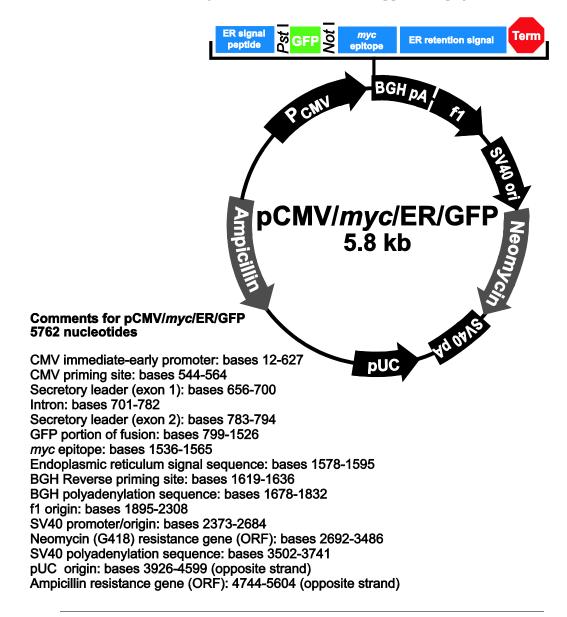
pCMV/myc/nuc/GFP Map

Мар


The figure below summarizes the features of pCMV/*myc*/nuc/GFP. The nucleotide sequence for pCMV/*myc*/nuc/GFP is available for downloading from <u>www.lifetechnologies.com</u> or from Technical Support (see page 27).

pCMV/myc/mito/GFP Map

Мар


The figure below summarizes the features of pCMV/*myc*/mito/GFP. The nucleotide sequence for pCMV/*myc*/mito/GFP is available for downloading from <u>www.lifetechnologies.com</u> or from Technical Support (see page 27).

pCMV/myc/ER/GFP Map

Мар

The figure below summarizes the features of pCMV/myc/ER/GFP. The nucleotide sequence for pCMV/myc/ER/GFP is available for downloading from <u>www.lifetechnologies.com</u> or from Technical Support (see page 27).

Accessory Products

Introduction

The products listed in this section are intended for use with the pFLD vectors. For more information, refer to <u>www.lifetechnologies.com</u> or call Technical Support (see page 27).

Item	Quantity	Catalog no.
Electrocomp [™] TOP10F′	$5 \times 80 \ \mu L$	C665-55
One Shot [®] TOP10F' (chemically competent cells)	$21 \times 50 \ \mu L$	C3030-03
PureLink [®] HiPure Midiprep Kit	25 preps	K2100-04
Lipofectamine [®] 2000	1.5 mL	11668-019
	0.75 mL	11668-027

Products Available Separately

Primers to sequence your insert in the pCMV/*myc* vectors and antibodies to the *c-myc* epitope are available for purchase. pShooterTM vectors containing the EF1 α promoter are also available. You may find that one promoter expresses your protein better than the other in your particular cell line. See the table below for ordering information.

Vector	Amount	Catalog no.
BGH Reverse Primer	2 µg	N575-02
Anti-myc Antibody	25 westerns	R950-25
Anti-myc-HRP Antibody	25 westerns	R951-25
pEF/ <i>myc</i> /nuc pEF/ <i>myc</i> /nuc/GFP	20 µg	V891-20

Technical Support

Obtaining support	For the latest services and support information for all locations, go to www.lifetechnologies.com/support .
	At the website, you can:
	 Access worldwide telephone and fax numbers to contact Technical Support and Sales facilities Search through frequently asked questions (FAQs)
	 Submit a question directly to Technical Support (<u>techsupport@lifetech.com</u>) Search for user documents, SDSs, vector maps and sequences, application notes, formulations, handbooks, certificates of analysis, citations, and other product support documents
	Obtain information about customer trainingDownload software updates and patches
Safety Data Sheets (SDS)	Safety Data Sheets (SDSs) are available at <u>www.lifetechnologies.com/support</u> .
Certificate of Analysis	The Certificate of Analysis provides detailed quality control and product qualification information for each product. Certificates of Analysis are available on our website. Go to <u>www.lifetechnologies.com/support</u> and search for the Certificate of Analysis by product lot number, which is printed on the box.
Limited warranty	Life Technologies Corporation is committed to providing our customers with high-quality goods and services. Our goal is to ensure that every customer is 100% satisfied with our products and our service. If you should have any questions or concerns about a Life Technologies product or service, contact our Technical Support Representatives. All Life Technologies products are warranted to perform according to specifications stated on the certificate of analysis. The Company will replace, free of charge, any product that does not meet those specifications. <u>This warranty</u> <u>limits the Company's liability to only the price of the product</u> . No warranty is granted for products beyond their listed expiration date. No warranty is applicable unless all product components are stored in accordance with instructions. The Company reserves the right to select the method(s) used to analyze a product unless the Company agrees to a specified method in writing prior to acceptance of the order. Life Technologies makes every effort to ensure the accuracy of its publications, but realizes that the occasional typographical or other error is inevitable. Therefore the Company makes no warranty of any kind regarding the contents of any publications or documentation. If you discover an error in any of our publications, report it to our Technical Support Representatives. Life Technologies Corporation shall have no responsibility or liability for any special, incidental, indirect or consequential loss or damage whatsoever. The above limited warranty is sole and exclusive. No other warranty is made, whether expressed or implied, including any warranty of merchantability or fitness for a particular purpose.

Purchaser Notification

Limited Use Label License No: Research Use Only	The purchase of this product conveys to the purchaser the limited, non- transferable right to use the purchased amount of the product only to perform internal research for the sole benefit of the purchaser. No right to resell this product or any of its components is conveyed expressly, by implication, or by estoppel. This product is for internal research purposes only and is not for use in commercial applications of any kind, including, without limitation, quality control and commercial services such as reporting the results of purchaser's activities for a fee or other form of consideration. For information on obtaining additional rights, please contact outlicensing@lifetech.com or Out Licensing, Life Technologies, 5791 Van Allen Way, Carlsbad, California 92008.
Limited Use Label License: (Cycle 3) Mutant GFP	The (cycle 3) mutant GFP gene was produced by Maxygen, Inc. using the DNA shuffling technology. Crameri, A., Whitehorn,E.A., and Stemmer, W.P.C. (1996) Improved Green Fluorescent Protein by Molecular Evolution Using DNA Shuffling. <i>Nature Biotechnology</i> , 14: 315-319.
Limited Use Label License: GFP	This product is sold under license from Columbia University. Rights to use this product are limited to research use only. No other rights are conveyed. Inquiry into the availability of a license to broader rights or the use of this product for commercial purposes should be directed to Columbia Innovation Enterprise, Columbia University, Engineering Terrace-Suite 363, New York, New York 10027.
Limited Use Label License: 6x His Tag	This product is licensed from Hoffmann-La Roche, Inc., Nutley, NJ and/or Hoffmann-LaRoche Ltd., Basel, Switzerland and is provided only for use in research. Information about licenses for commercial use is available from QIAGEN GmbH, Max-Volmer-Str. 4, D-40724 Hilden, Germany.

- Andersson, S., Davis, D. L., Dahlbäck, H., Jörnvall, H., and Russell, D. W. (1989). Cloning, Structure, and Expression of the Mitochondrial Cytochrome P-450 Sterol 26-Hydroxylase, a Bile Acid Biosynthetic Enzyme. J. Biol. Chem. 264, 8222-8229.
- Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (1994). Current Protocols in Molecular Biology (New York: Greene Publishing Associates and Wiley-Interscience).
- Biocca, S., and Cattaneo, A. (1995). Intracellular Immunization: Antibody Targeting to Subcellular Compartments. Trends Cell Biol. *5*, 248-252.
- Boshart, M., Weber, F., Jahn, G., Dorsch-Häsler, K., Fleckenstein, B., and Schaffner, W. (1985). A Very Strong Enhancer is Located Upstream of an Immediate Early Gene of Human Cytomegalovirus. Cell *41*, 521-530.
- Cattaneo, A., and Biocca, S. (1997). Intracellular Antibodies: Development and Applications (San Diego, CA: Landes Bioscience, distributed by Academic Press).
- Chen, C., and Okayama, H. (1987). High-Efficiency Transformation of Mammalian Cells by Plasmid DNA. Molec. Cell. Biol. 7, 2745-2752.
- Chu, G., Hayakawa, H., and Berg, P. (1987). Electroporation for the Efficient Transfection of Mammalian Cells with DNA. Nucleic Acids Res. *15*, 1311-1326.
- Crameri, A., Whitehorn, E. A., Tate, E., and Stemmer, W. P. C. (1996). Improved Green Fluorescent Protein by Molecular Evolution Using DNA Shuffling. Nature Biotechnology 14, 315-319.
- Evans, G. I., Lewis, G. K., Ramsay, G., and Bishop, V. M. (1985). Isolation of Monoclonal Antibodies Specific for *c-myc* Proto-oncogene Product. Mol. Cell. Biol. 5, 3610-3616.
- Felgner, P. L., Holm, M., and Chan, H. (1989). Cationic Liposome Mediated Transfection. Proc. West. Pharmacol. Soc. 32, 115-121.
- Felgner, P. L., and Ringold, G. M. (1989). Cationic Liposome-Mediated Transfection. Nature 337, 387-388.
- Fisher-Fantuzzi, L., and Vesco, C. (1988). Cell-Dependent Efficiency of Reiterated Nuclear Signals in a Mutant Simian Virus 40 Oncoprotein Targeted to the Nucleus. Mol. Cell. Biol. *8*, 5495-5503.
- Gargano, N., and Cattaneo, A. (1997). Rescue of a Neutralising Antiviral Antibody Fragment from an Intracellular Polyclonal Repertoire Expressed in Mammalian Cells. FEBS Lett. *414*, 537-540.
- Goodwin, E. C., and Rottman, F. M. (1992). The 3'-Flanking Sequence of the Bovine Growth Hormone Gene Contains Novel Elements Required for Efficient and Accurate Polyadenylation. J. Biol. Chem. 267, 16330-16334.
- Hoogenboom, H. R., Griffiths, A. D., Johnson, K. S., Chiswell, D. J., Hudson, P., and Winter, G. (1991). Multi-Subunit Proteins on the Surface of Filamentous Phage: Methodologies for Displaying Antibody (Fab) Heavy and Light Chains. Nucleic Acids Res. 19, 4133-4137.
- Kabat, E. A., Wu, T. T., Reid-Miller, M., Perry, H. M., and Gottesman, K. S. (1987). Sequences of Proteins of Immunological Interest (Washington, D.C.: U.S. Department of Health and Human Services).
- Kozak, M. (1987). An Analysis of 5'-Noncoding Sequences from 699 Vertebrate Messenger RNAs. Nucleic Acids Res. 15, 8125-8148.
- Kozak, M. (1990). Downstream Secondary Structure Facilitates Recognition of Initiator Codons by Eukaryotic Ribosomes. Proc. Natl. Acad. Sci. USA *87*, 8301-8305.
- Munro, S., and Pelham, H. R. B. (1987). A C-Terminal Signal Prevents Secretion of Luminal ER Proteins. Cell 48, 899-907.

Continued on next page

- Nelson, J. A., Reynolds-Kohler, C., and Smith, B. A. (1987). Negative and Positive Regulation by a Short Segment in the 5´-Flanking Region of the Human Cytomegalovirus Major Immediate-Early Gene. Molec. Cell. Biol. 7, 4125-4129.
- Persic, L., Righi, M., Roberts, A., Hoogenboom, H. R., Cattaneo, A., and Bradbury, A. (1997a). Targeting Vectors for Intracellular Immunisation. Gene 187, 1-8.
- Persic, L., Roberts, A., Wilton, J., Cattaneo, A., Bradbury, A., and Hoogenboom, H. R. (1997b). An Integrated Vector System for the Eukaryotic Expression of Antibodies or Their Fragments After Selection from Phage Display Libraries. Gene 187, 9-18.
- Rizzuto, R., Simpson, A. W. M., Brini, M., and Pozzan, T. (1992). Rapid Changes of Mitochondrial Ca2+ Revealed by Specifically Targeted Recombinant Aequorin. Nature *358*, 325-327.
- Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, Second Edition (Plainview, New York: Cold Spring Harbor Laboratory Press).
- Shigekawa, K., and Dower, W. J. (1988). Electroporation of Eukaryotes and Prokaryotes: A General Approach to the Introduction of Macromolecules into Cells. BioTechniques *6*, 742-751.
- Southern, P. J., and Berg, P. (1982). Transformation of Mammalian Cells to Antibiotic Resistance with a Bacterial Gene Under Control of the SV40 Early Region Promoter. J. Molec. Appl. Gen. 1, 327-339.
- Stenberg, R. M., Thomsen, D. R., and Stinski, M. F. (1984). Structural Analysis of the Major Immediate Early Gene of Human Cytomegalovirus. J. Virol. *49*, 190-199.
- Thomsen, D. R., Stenberg, R. M., Goins, W. F., and Stinski, M. F. (1984). Promoter-Regulatory Region of the Major Immediate Early Gene of Human Cytomaegalovirus. Proc. Natl. Acad. Sci. USA 81, 659-663.
- Virtanen, I., Ekblom, P., and Laurila, P. (1980). Subcellular Compartmentalization of Saccharide Moieties in Cultured Normal and Malignant Cells. J. Cell Biol. *85*, 429-434.
- Wigler, M., Silverstein, S., Lee, L.-S., Pellicer, A., Cheng, Y.-C., and Axel, R. (1977). Transfer of Purified Herpes Virus Thymidine Kinase Gene to Cultured Mouse Cells. Cell *11*, 223-232.
- Zylka, M. J., and Schnapp, B. J. (1996). Optimized Filter Set and Viewing Conditions for the S65T Mutant of GFP in Living Cells. BioTechniques 21, 220-226.

©2012 Life Technologies Corporation. All rights reserved.

The trademarks mentioned herein are the properties of Life Technologies Corporation or their respective owners.

www.lifetechnologies.com