Technical Data Sheet

FITC Rat Anti-Mouse CD8a

1	о.		_	٦	١.,			١.	nfo			-	-+	4	_	
ı		ш	U	·U	ıu	L.	L	и	ш	ıu	ш	ш	а	u	U	и

 Material Number:
 553031

 Alternate Name:
 Ly-2, Lyt-2

 Size:
 0.5 mg

 Concentration:
 0.5 mg/ml

 Clone:
 53-6.7

Storage Buffer: Aqueous buffered solution containing ≤0.09% sodium azide.

Description

This antibody is routinely tested by flow cytometric analysis. Other applications were tested at BD Biosciences Pharmingen during antibody development only or reported in the literature.

Preparation and Storage

The monoclonal antibody was purified from tissue culture supernatant or ascites by affinity chromatography. The antibody was conjugated with FITC under optimum conditions, and unreacted FITC was removed. Store undiluted at 4° C and protected from prolonged exposure to light. Do not freeze.

Application Notes

plica	

Flow cytometry	Routinely Tested
----------------	------------------

Suggested Companion Products

Catalog Number	Name	Size	Clone
553929	FITC Rat IgG2a κ Isotype Control	0.25 mg	R35-95

Product Notices

- 1. Since applications vary, each investigator should titrate the reagent to obtain optimal results.
- 2. Please refer to www.bdbiosciences.com/pharmingen/protocols for technical protocols.
- 3. Caution: Sodium azide yields highly toxic hydrazoic acid under acidic conditions. Dilute azide compounds in running water before discarding to avoid accumulation of potentially explosive deposits in plumbing.

BD Biosciences

bdbiosciences.com

 United States
 Canada
 Europe
 Japan
 Asia Pacific
 Latin America/Caribbear

 877.232.8995
 888.259.0187
 32.53.720.550
 0120.8555.90
 65.6861.0633
 55.11.5185.9995

For country-specific contact information, visit bdbiosciences.com/how_to_order/
Conditions: The information disclosed herein is not to be construed as a recommendation to use the above product in violation

of any patents. BD Biosciences will not be held responsible for patent infingement or other violations that may occur with the use of our products. Purchase does not include or carry any right to resell or transfer this product either as a stand-alone product or as a component of another product. Any use of this product or their than the permitted use without the express written authorization of Becton Dickinson and Company is strictly prohibited.

For Research Use Only. Not for use in diagnostic or therapeutic procedures. Not for resale.

BD, BD Logo and all other trademarks are the property of Becton, Dickinson and Company, ©2006 BD

References

Bierer BE, Sleckman BP, Ratnofsky SE, Burakoff SJ. The biologic roles of CD2, CD4, and CD8 in T-cell activation. *Annu Rev Immunol.* 1989; 7:579-599.(Biology) Fujiura Y, Kawaguchi M, Kondo Y, et al. Development of CD8 alpha alpha+ intestinal intraepithelial T cells in beta 2-microglobulin- and/or TAP1-deficient mice. *J Immunol.* 1996; 156(8):2710-2715.(Biology)

Hathcock KS. T cell depletion by cytotoxic elimination. In: Coligan JE, Kruisbeek AM, Margulies DH, Shevach EM, Strober W, ed. *Current Protocols in Immunology*. New York: John Wiley and Sons; 1991:3.4.1-3.4.3.(Biology)

Janeway CA Jr. The T cell receptor as a multicomponent signalling machine: CD4/CD8 coreceptors and CD45 in T cell activation. *Annu Rev Immunol.* 1992; 10:645-674.(Biology)

Kruisbeek AM, Shevach EM. Proliferative assays for T cell function. In: Coligan J, Kruisbeek AM, Margulies D, Shevach EM, Strober W, ed. *Current Protocols in Immunology*. New York: John Wiley and Sons; 1991:3.12.1-3.12.14.(Biology)

Ledbetter JA, Herzenberg LA. Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. *Immunol Rev.* 1979; 47:63-90.(Biology)

Ledbetter JA, Rouse RV, Micklem HS, Herzenberg LA. T cell subsets defined by expression of Lyt-1,2,3 and Thy-1 antigens. Two-parameter immunofluorescence and cytotoxicity analysis with monoclonal antibodies modifies current views. *J Exp Med.* 1980; 152(2):280-295.(Biology)

Ledbetter JA, Seaman WE, Tsu TT, Herzenberg LA. Lyt-2 and lyt-3 antigens are on two different polypeptide subunits linked by disulfide bonds. Relationship of subunits to T cell cytolytic activity. *J Exp Med.* 1981; 153(6):1503-1516.(Biology)

Lefrancois L. Extrathymic differentiation of intraepithelial lymphocytes: generation of a separate and unequal T-cell repertoire. *Immunol Today.* 1991; 12(12):436-438.(Biology)

Leishman AJ, Naidenko OV, Attinger A, et al. T cell responses modulated through interaction between CD8alphaalpha and the nonclassical MHC class I molecule, TL. Science. 2001; 294(5548):1848-1849.(Biology)

MacDonald HR, Schreyer M, Howe RC, Bron C. Selective expression of CD8 alpha (Ly-2) subunit on activated thymic gamma/delta cells. Eur J Immunol. 1990; 20(4):927-930.(Biology)

Mitnacht R, Bischof A, Torres-Nagel N, Hunig T. Opposite CD4/CD8 lineage decisions of CD4+8+ mouse and rat thymocytes to equivalent triggering signals: correlation with thymic expression of a truncated CD8 alpha chain in mice but not rats. *J Immunol.* 1998; 160(2):700-707.(Biology)

Murosaki S, Yoshikai Y, Ishida A, et al. Failure of T cell receptor V beta negative selection in murine intestinal intra-epithelial lymphocytes. *Int Immunol.* 1991; 3(10):1005-1013.(Biology)

Nakayama K, Nakayama K, Negishi I, et al. Requirement for CD8 beta chain in positive selection of CD8-lineage T cells. *Science*. 1994; 263(5150):1131-1133. (Biology)

Negm HI, Mansour MH, Saad AH, Abdel Halim RS. Structural characterization of an Lyt-2/3 homolog expressed on Bufo regularis lymphocytes. Comp Biochem Physiol B Biochem Mol Biol. 1996; 113(1):79-87.(Biology)

O'Rourke AM, Mescher MF. The roles of CD8 in cytotoxic T lymphocyte function. Immunol Today. 1993; 14(4):183-188.(Biology)

Rocha B, Vassalli P, Guy-Grand D. The extrathymic T-cell development pathway. *Immunol Today*. 1992; 14(3):140-141. (Biology)

Sydora BC, Brossay L, Hagenbaugh A, Kronenberg M, Cheroutre H. TAP-independent selection of CD8+ intestinal intraepithelial lymphocytes. *J Immunol.* 1996; 156(11):4209-4216.(Biology)

Traver D, Akashi K, Manz M, et al. Development of CD8alpha-positive dendritic cells from a common myeloid progenitor. *Science*. 2000; 290(5499):2152-2154. (Biology)

van Ewijk W, van Soest PL, van den Engh GJ. Fluorescence analysis and anatomic distribution of mouse T lymphocyte subsets defined by monoclonal antibodies to the antiquens Thy-1, Lyt-1, Lyt-2, and T-200. *J Immunol.* 1981; 127(6):2594-2604.(Biology)

Walker ID, Murray BJ, Hogarth PM, Kelso A, McKenzie IF. Comparison of thymic and peripheral T cell Ly-2/3 antigens. *Eur J Immunol.* 1984; 14(10):906-910. (Biology)

Wang J, Klein JR. Thymus-neuroendocrine interactions in extrathymic T cell development. Science. 1994; 265(5180):1860-1862.(Biology)

Zamoyska R. The CD8 coreceptor revisited: one chain good, two chains better. Immunity. 1994; 1(4):243-246.(Biology)

Zamoyska R, Derham P, Gorman SD, et al. Inability of CD8 alpha' polypeptides to associate with p56lck correlates with impaired function in vitro and lack of expression in vivo. *Nature*. 1989; 342(6247):278-281.(Biology)

Zamoyska R, Vollmer AC, Sizer KC, Liaw CW, Parnes JR. Two Lyt-2 polypeptides arise from a single gene by alternative splicing patterns of mRNA. *Cell.* 1985; 43(1):153-163.(Biology)

553031 Rev. 20 Page 2 of 2