## **Technical Data Sheet**

# Purified Rat Anti-Mouse CD90.2

#### **Product Information**

 Material Number:
 553009

 Alternate Name:
 Thy-1.2

 Size:
 0.5 mg

 Concentration:
 0.5 mg/ml

 Clone:
 30-H12

Immunogen:Mouse Thymus / SpleenIsotype:Rat (LOU) IgG2b,  $\kappa$ Reactivity:QC Testing: Mouse

Storage Buffer: Aqueous buffered solution containing ≤0.09% sodium azide.

### Description

The 30-H12 clone has been reported to react with the CD90.2 (Thy-1.2) alloantigen on thymocytes, most peripheral T lymphocytes, some intraepithelial T lymphocytes (IEL, DEC), epithelial cells, fibroblasts, neurons, hematopoietic stem cells, but not B lymphocytes, of most mouse strains. Thy-1.2 has also been initially reported to be detectable on thymic dendritic cells, but later revealed that the antigen was probably picked up from T-lineage cells. 30-H12 mAb has been reported not to cross-react with Thy-1.1 (e.g., AKR/J, PL), or with rat Thy-1. CD90 is a GPI-anchored membrane glycoprotein of the Ig superfamily which is involved in signal transduction. In addition, there is evidence that CD90 mediates adhesion of thymocytes to thymic stroma. It has been reported that crosslinked 30-H12 antibody induces Ca2+ influx into thymocytes and that co-crosslinking of 30-H12 mAb with antibody to the CD3/TCR complex intensifies thymocyte signal transduction, promotes apoptosis of thymocytes, and inhibits the CD3-mediated proliferative response of mature T lymphocytes.

This antibody is routinely tested by flow cytometric analysis. Other applications were tested at BD Biosciences Pharmingen during antibody development only or reported in the literature.

## **Preparation and Storage**

The monoclonal antibody was purified from tissue culture supernatant or ascites by affinity chromatography. Store undiluted at 4° C.

### **Application Notes**

### Application

| Flow cytometry   | Routinely Tested |
|------------------|------------------|
| Apoptosis        | Reported         |
| (Co)-stimulation | Reported         |

### **Recommended Assay Procedure:**

Caution: Sodium azide is a reversible inhibitor of oxidative metabolism; therefore, antibody preparations containing this preservative agent must not be used in cell cultures nor injected into animals. Sodium azide may be removed by washing stained cells or plate-bound antibody or dialyzing soluble antibody in sodium azide-free buffer. Since endotoxin may also affect the results of functional studies, we recommend the NA/LE<sup>TM</sup> (No Azide/Low Endotoxin) antibody format for in vitro and in vivo use.

#### **Suggested Companion Products**

| Catalog Number | Name                                       | Size   | Clone    |  |
|----------------|--------------------------------------------|--------|----------|--|
| 553057         | Purified NA/LE Hamster Anti-Mouse CD3e     | 0.5 mg | 145-2C11 |  |
| 553986         | Purified Rat IgG2b, Kappa Isotype Standard | 0.5 mg | A95-1    |  |

#### BD Biosciences

bdbiosciences.com

United States Canada Europe Japan Asia Pacific Latin America/Caribbean 877.232.8995 888.259.0187 32.53.720.550 0120.8555.90 65.6861.0633 55.11.5185.9995 For country-specific contact information, visit bdbiosciences.com/how to order/

Conditions: The information disclosed herein is not to be construed as a recommendation to use the above product in violation of any patents. BD Biosciences will not be held responsible for patent infringement or other violations that may occur with the use of our products. Purchase does not include or carry any right to resell or transfer this product either as a stand-alone product or as a component of another product. Any use of this product other than the permitted use without the express written authorization of Becton Dickinson and Company is strictly prohibited.

For Research Use Only, Not for use in diagnostic or therapeutic procedures. Not for resale.

BD, BD Logo and all other trademarks are the property of Becton, Dickinson and Company. ©2006 BD



553009 Rev. 17

#### **Product Notices**

- 1. Since applications vary, each investigator should titrate the reagent to obtain optimal results.
- 2. Please refer to www.bdbiosciences.com/pharmingen/protocols for technical protocols.
- 3. Caution: Sodium azide yields highly toxic hydrazoic acid under acidic conditions. Dilute azide compounds in running water before discarding to avoid accumulation of potentially explosive deposits in plumbing.

#### References

Borrello MA, Phipps RP. Differential Thy-1 expression by splenic fibroblasts defines functionally distinct subsets. *Cell Immunol.* 1996; 173(2):198-206.(Biology) Hathcock KS. T cell depletion by cytotoxic elimination. In: Coligan JE, Kruisbeek AM, Margulies DH, Shevach EM, Strober W, ed. *Current Protocols in Immunology*. New York: John Wiley and Sons; 1991:3.4.1-3.4.3.(Methodology: Depletion)

He H-T, Naquet P, Caillol D, and Pierres M. Thy-1 supports adhesion of mouse thymocytes to thymic epithelial cells through a Ca2+-independent mechanism. *J Exp Med.* 1991; 173:515-518.(Biology)

Hueber AO, Raposo G, Pierres M, He HT. Thy-1 triggers mouse thymocyte apoptosis through a bcl-2-resistant mechanism. *J Exp Med.* 1994; 179(3):785-796. (Biology)

Ikuta K, Uchida N, Friedman J, Weissman IL. Lymphocyte development from stem cells. Annu Rev Immunol. 1992; 10:759-783.(Biology)

Kroczek RA, Gunter KC, Germain RN, Shevach EM. Thy-1 functions as a signal transduction molecule in T lymphocytes and transfected B lymphocytes. *Nature*. 1986; 322(6075):181-184.(Biology)

Kruisbeek AM. In vivo depletion of CD4- and CD8-specific T cells. In: Coligan JE, Kruisbeek AM, Margulies DH, Shevach EM, Strober W, ed. *Current Protocols in Immunology*. New York: John Wiley and Sons; 1991:4.1.1-4.1.5.(Methodology: Depletion)

Ledbetter JA, Herzenberg LA. Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. *Immunol Rev.* 1979; 47:63-90.(Immunogen) Ledbetter JA, Rouse RV, Micklem HS, Herzenberg LA. T cell subsets defined by expression of Lyt-1,2,3 and Thy-1 antigens. Two-parameter immunofluorescence and cytotoxicity analysis with monoclonal antibodies modifies current views. *J Exp Med.* 1980; 152(2):280-295.(Biology)

Lefrancois L. Extrathymic differentiation of intraepithelial lymphocytes: generation of a separate and unequal T-cell repertoire. *Immunol Today.* 1991; 12(12):436-438.(Biology)

Nakashima I, Pu M-Y, Hamaguchi M, et al. Pathway of signal delivery to murine thymocytes triggered by co-crosslinking CD3 and Thy-1 for cellular DNA fragmentation and growth inhibition. *J Immunol.* 1993; 151(7):3511-3520.(Biology: Apoptosis, (Co)-stimulation)

Nakashima I, Zhang Y-H, Rahman SMJ, et al. Evidence of synergy between Thy-1 and CD3/TCR complex in signal delivery to murine thymocytes for cell death. *J Immunol.* 1991; 147:1153-1162.(Biology: Apoptosis, (Co)-stimulation)

Radrizzani M, Carminatti H, Pivetta OH, Idoyaga Vargas VP. Developmental regulation of Thy 1.2 rate of synthesis in the mouse cerebellum. *J Neurosci Res.* 1995; 42(2):220-227.(Biology)

Tigelaar RE, Lewis JM, Bergstresser PR. TCR gamma/delta+ dendritic epidermal T cells as constituents of skin-associated lymphoid tissue. *J Invest Dermatol.* 1990; 94(6):58S-63S.(Biology)

Williams AF, Gagnon J. Neuronal cell Thy-1 glycoprotein: homology with immunoglobulin. Science. 1982; 216(4547):696-703 (Biology)

Wu L, Vremec D, Ardavin C, et al. Mouse thymus dendritic cells: kinetics of development and changes in surface markers during maturation. Eur J Immunol. 1995; 25(2):418-425.(Biology)

Zheng B, Han S, Kelsoe G. T helper cells in murine germinal centers are antigen-specific emigrants that downregulate Thy-1. *J Exp Med.* 1996; 184(3):1083-1091. (Biology)

Zhong RK, Donnenberg AD, Edison L, Harrison DE. The appearance of Thy-1- donor T cells in the peripheral circulation 3-6 weeks after bone marrow transplantation suggests an extrathymic origin. *Int Immunol.* 1996; 8(2):171-176.(Biology)

553009 Rev. 17 Page 2 of 2