Vitamin D3 Receptor (D2K6W) Rabbit mAb

✓ 100 µl (10 western blots)

Orders 877-616-CELL (2355)

orders@cellsignal.com

Support 877-678-TECH (8324)

info@cellsignal.com

Web www.cellsignal.com

New 05/13

For Research Use Only. Not For Use In Diagnostic Procedures.

Applications W. IP. IHC-P Endogenous

Species Cross-Reactivity* H, M, (Hm, B, Pg, Hr)

Molecular Wt. 48. 54 kDa

Isotyne Rabbit IgG**

Background: Although originally identified based on their roles in calcium and bone homeostasis, the vitamin D3 receptor (VDR/NR1I1) and its ligand 1-α, 25-dihydroxycholecalciferol $[1\alpha, 25(OH)_{\circ}D_{\circ}]$ are now recognized to exert biological effects in almost every tissue of the human body. Targets for vitamin D signaling include the central nervous system, skin, immune system, endocrine glands, kidney, and colon. At the cellular level, vitamin D signaling affects proliferation, differentiation, and apoptosis of both normal and transformed cells. Within the steroid receptor gene family, VDR belongs to the NR1I subfamily that also includes NR1I2/PXR and NR1I3/CAR. The human VDR gene is composed of 11 exons that encode six domains (A-F) of the full length VDR protein, which includes an N-terminal dual zinc finger DNA binding domain, a C-terminal ligand-binding activity domain, and an extensive unstructured region that links the two functional domains together (1). Upon 1 α , 25(OH), D, binding to the hormone ligand-binding domain, VDR is stabilized by the phosphorylation of Ser51 in the DNA-binding domain by PKC (2), and Ser208 in the hinge region by casein kinase II (3). VDR associates with the retinoic acid receptor (RXR) through dimerization domains. The 1 α , 25(OH), D,-VDR-RXR complex binds to the vitamin D response elements (VDREs) in the promoters of target genes through the DNA-binding domain. Ligand-induced conformation changes in VDR results in the dissociation of the co-repressor, silencing-mediator for retinoid and thyroid hormone receptors (SMRT), and allows interaction of the VDR activation function (AF2) transactivation domain with transcriptional coactivators (1).

Studies have shown that variable VDR expression is associated with different forms or stages of cancer and likely results from tissue-type variation in 1α , $25(OH)_{2}D_{2}$ signaling. In the case of colon cancer, research indicates that VDR expression is relatively higher in hyperplastic colon polyps and during early tumorigenesis but diminishes in later stage, poorly differentiated tumors. Multiple studies suggest that 1α , $25(OH)_{\circ}D_{\circ}$ may be an attractive target for development as a therapeutic anticancer agent (4,5).

Specificity/Sensitivity: Vitamin D3 Receptor (D2K6W) Rabbit mAb recognizes endogenous levels of total vitamin D3 receptor protein. This antibody does not cross-react with vitamin D3 receptor-like proteins. Based upon sequence alignment, this antibody is predicted to react with both VDRB1 and VDRB2 isoforms.

Source/Purification: Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues near the amino terminus of human vitamin D receptor isoform A protein.

Background References:

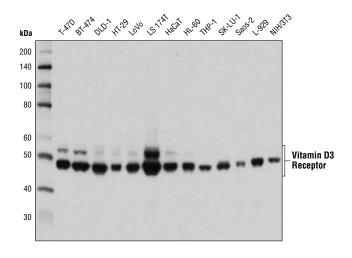
- (1) Haussler, M.R. et al. (1998) J Bone Miner Res 13, 325-49.
- (2) Hsieh, J.C. et al. (1991) Proc Natl Acad Sci USA 88, 9315-9.
- (3) Jurutka, P.W. et al. (1993) J Biol Chem 268, 6791-9.
- (4) Matusiak, D. et al. (2005) Cancer Epidemiol Biomarkers Prev 14, 2370-6.
- (5) Deeb, K.K. et al. (2007) Nat Rev Cancer 7, 684-700.

Entrez-Gene ID #7421 Swiss-Prot Acc. #P11473

Storage: Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 μg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at -20°C. Do not aliquot the antibody.

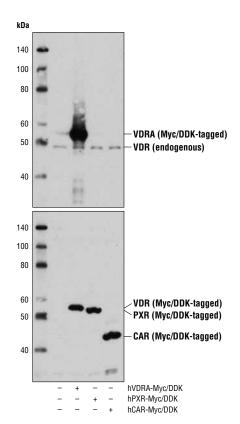
*Species cross-reactivity is determined by western blot.

**Anti-rabbit secondary antibodies must be used to detect this antibody.

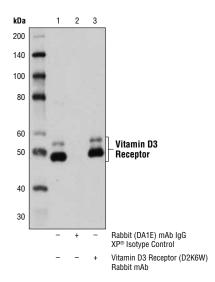

Recommended Antibody Dilutions:

Western blotting 1:1000 Immunoprecipitation 1:100 Immunohistochemistry (Paraffin) 1:200† Unmasking buffer: Citrate Antibody diluent: SignalStain® Antibody Diluent #8112 Detection reagent: SignalStain® Boost (HRP, Rabbit) #8114

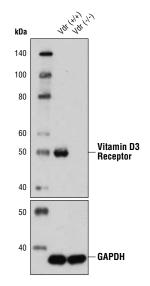
†Optimal IHC dilutions determined using SignalStain® Boost IHC Detection Reagent.

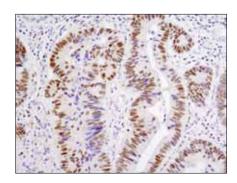

For product specific protocols please see the web page for this product at www.cellsignal.com.

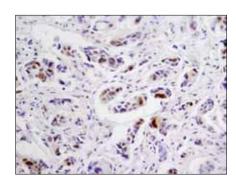
Please visit www.cellsignal.com for a complete listing of recommended complementary products.

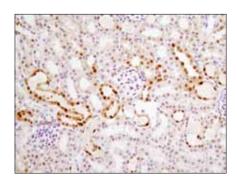


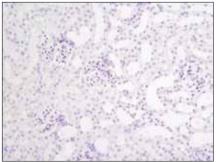
Western blot analysis of extracts from various cell lines using Vitamin D3 Receptor (D2K6W) Rahhit mAh


IMPORTANT: For western blots, incubate membrane with diluted antibody in 5% w/v nonfat dry milk, 1X TBS, 0.1% Tween-20 at 4°C with gentle shaking, overnight.


Western blot analysis of extracts from 293T cells, mock transfected (-) or transfected with constructs expressing Myc/DDK-tagged full-length human vitamin D receptor isoform A (hVDRA-Myc/DDK; +), full-length human pregnane X receptor (hPXR-Myc/DDK; +), and full-length human constitutive androstane receptor (hCAR-Myc/DDK; +), using Vitamin D3 Receptor (D2K6W) Rabbit mAb (upper) or DYKDDDDK Tag Antibody #2368 (lower).


Immunoprecipitation of vitamin D3 receptor from T-47D cell extracts, using Rabbit (DA1E) mAb IgG XP® Isotype Control #3900 (lane 2) or Vitamin D3 Receptor (D2K6W) Rabbit mAb (lane 3). Lane 1 is 10% input. Western blot analysis was performed using Vitamin D3 Receptor (D2K6W) Rabbit mAb.


Western blot analysis of kidney tissue extracts from Vdr (+/+) and Vdr (-/-) mice using Vitamin D3 Receptor (D2K6W) Rabbit mAb (upper) and GAPDH (D16H11) XP® Rabbit mAb #5174 (lower). (Vdr (+/+) and Vdr (-/-) kidneys were kindly provided by Dr. Marie Demay, Massachusetts General Hospital).



Immunohistochemical analysis of paraffin-embedded human colon carcinoma using Vitamin D3 Receptor (D2K6W) Rabbit mAb.

Immunohistochemical analysis of paraffin-embedded human breast carcinoma using Vitamin D3 Receptor (D2K6W) Rabbit mAb.

Immunohistochemical analysis of paraffin-embedded mouse kidney, Vdr (+/+; left) or Vdr (-/-; right), using Vitamin D3 Receptor (D2K6W) Rabbit mAb (Tissues courtesy of Dr. Marie Demay, Massachusetts General Hospital).