

Technical Manual

Chroma-Luc[™] Reporter Vectors

INSTRUCTIONS FOR USE OF PRODUCTS E1411, E1421, E1431, E1441, E1451 AND E1461.

www.promega.com

PRINTED IN USA. Revised 8/09

Part# TM059

Chroma-Luc[™] Reporter Vectors

All technical literature is available on the Internet at: www.promega.com/tbs Please visit the web site to verify that you are using the most current version of this Technical Manual. Please contact Promega Technical Services if you have questions on use of this system. E-mail: techserv@promega.com

1.	Description	1
2.	Product Components and Storage Conditions	3
3.	General Considerations	3
4.	Chroma-Luc [™] Reporter Vector Backbones	10
5.	Chroma-Luc [™] Reporter Vector Maps and Sequence Information	11
6.	Emission Color Separation	17
	A. Filter Choices	17
	B. Data Analysis	17
7.	Appendix	20
	A. pCBR-Basic Vector Restriction Sites	20
	B. pCBR-Control Vector Restriction Sites	22
	C. pCBG68-Basic Vector Restriction Sites	24
	D. pCBG68-Control Vector Restriction Sites	26
	E. pCBG99-Basic Vector Restriction Sites	28
	F. pCBG99-Control Vector Restriction Sites	30
	G. References	32
	H. Related Products	32

1. Description

Normalizing the expression of an experimental reporter to the expression of a control reporter can help to differentiate specific from nonspecific effects of cell-treatment protocols. This normalization is helpful for both transiently and stably transfected cell lines. Theoretically, the more similar the experimental and control reporters are, the more relevant the normalization. Based on this principle, we have developed a luciferase-based technology, the Chroma-LucTM Reporter Vectors^(a-d). The Chroma-LucTM Vectors include a vector encoding one red-emitting luciferase (CBR*luc*) and two vectors encoding green-emitting luciferases (CBG68*luc* and CBG99*luc*; Figure 1).

The design of the synthetic Chroma-Luc[™] genes is based on a native Yellow-Green luciferase gene originally cloned from *Pyrophorus plagiophthalamus*, a large click beetle indigenous to the Caribbean. To ensure reliability and high levels of expression, the Chroma-Luc[™] genes have been codon optimized for mammalian expression and cleared of most known consensus transcription

O Promega

factor binding sites. In addition, the predicted peroxisome targeting sequences have been removed. Upon addition of the luciferase substrates, the engineered CBRluc luciferase emits red light (613 nm), which has optimal color separation from the corresponding 537 nm green-emitting Chroma-Luc[™] luciferases (i.e., CBG68luc and CBG99luc).

Because of different substrate requirements between the Chroma-LucTM luciferases and other beetle luciferases, Promega has developed Chroma-GloTM Reagent^(a,c,d,e) (Cat.# E4910, E4920 and E4950) as a companion reagent to the Chroma-LucTM Vectors. The Chroma-GloTM Reagent has been designed and optimized to elicit maximal luminescence from all the Chroma-LucTM enzymes. Color-separating filters allow the user to measure the red and green luminescent signals independently.

Figure 1. Emission spectra of the Chroma-Luc[™] enzymes. Independent populations of CHO cells were transfected with either pCBR-Control, pCBG68-Control, or pCBG99-Control. Twenty-four hours after transfection, the cells were lysed by adding Glo Lysis Buffer (Cat.# E2661). Equal volumes of cell lysate and Chroma-Glo[™] Reagent were mixed and incubated for 5 minutes at room temperature. The emission spectra were generated using the Spex Fluorolog[®]-2 spectrofluorometer with the excitation source turned off. Emission data were collected from 450–700 nm. Maximum emission for CBG68luc and CBG99luc is 537 nm, while CBRluc has a maximum emission of 613 nm.

Product	Size	Cat.#
pCBR-Basic Vector	20 µg	E1411
pCBR-Control Vector	20 µg	E1421
pCBG68-Basic Vector	20 µg	E1431
pCBG68-Control Vector	20 µg	E1441
pCBG99-Basic Vector	20 µg	E1451
pCBG99-Control Vector	20 µg	E1461

2. Product Components and Storage Conditions

Storage Conditions: Store the vectors at -20°C.

3. General Considerations

In cell biology research and pharmaceutical discovery, testing a wide variety of experimental conditions or a large number of chemical compounds for their effects on cellular physiology is a common practice. This testing is typically achieved through transcriptional assays using genetic reporters coupled to physiologically regulated genetic elements.

Monitoring upregulation of these genetic elements is relatively simple using luciferase assays because they are extremely sensitive, rapid and easy to perform. However, monitoring the downregulation of these genetic elements is more difficult because the generalized effects of cell death can be interpreted easily as a specific decrease in luciferase production. Normalizing the expression of an experimental reporter to the expression of a control reporter can help to distinguish specific from nonspecific effects. This normalization can also reduce the effect of variability of the transfection step. The Chroma-Glo[™] Luciferase Assay System and the Chroma-Luc[™] luciferases provide an ideal dual-reporter system, because the two reporter enzymes are highly similar (>98% amino acid identity) and because both signals are generated by a single-reagent addition.

Pyrophorus plagiophthalamus has two sets of light-emitting organs: a pair located on the dorsal surface of the prothorax, and a single organ located in the ventral cleft of the abdomen. The dorsal anterior organs emit a yellow to green luminescence, while the ventral cleft emits a higher-emission orange luminescence. Four luciferase-expressing genes were cloned from the ventral cleft. The emission for these four luciferases ranges from green to orange (544–593 nm). Based on their emission color, the four genes were named Green, Yellow-Green, Yellow and Orange. These four genes express luciferases that are highly similar; the proteins share between 95–99% amino acid identity. Sequence alignment of the four proteins revealed that key amino acids were responsible for the differences in emission colors.

O Promega

The experimental information gathered on how to manipulate emission color was used to design both a synthetic red-emitting and green-emitting luciferase. The wildtype Yellow-Green luciferase demonstrated the brightest signal, and this gene was selected as the template for designing the red- and green-emitting Chroma-Luc[™] luciferases. In addition to changes to generate different emission colors, several other sequence modifications were made to generate the most favorable synthetic genetic reporters.

To improve the expression, low-usage mammalian codons were replaced in the synthetic Chroma-Luc[™] genes (Table 1).

Table 1. Comparison of Codon Usage Among the Wildtype Yellow-Green Luciferase and the Synthetic CBR*luc*, CBG99*luc* and CBG68*luc* Luciferase Genes.

		Number of	Number of	Number of	Number of	
Amir	10	Codons in	Codons in	Codons in	Codons in	Percent
Acid/		Yellow-Green	CBRluc	CBG99luc	CBG68luc	Use in
Codo	n	Luciferase	(Red)	(Green)	(Green)	Human Cells
Ala/	GCA	15	4	4	5	20.0
	GCC	4	12	12	14	41.6
	GCG	3	1	0	0	10.3
	GCT	15	20	21	18	28.0
Arg/	AGA	7	0	0	0	18.8
	AGG	7	0	0	0	21.0
	CGA	6	0	0	2	10.2
	CGC	1	11	11	11	21.4
	CGG	0	0	0	0	19.7
	CGT	4	14	14	13	8.9
Asn/	AAC	7	12	13	13	57.7
	AAT	16	9	9	9	42.3
Asp/	GAC	6	12	12	14	57.2
	GAT	20	14	14	12	42.8
Cys/	TGC	4	4	4	3	59.4
	TGT	9	7	7	8	40.6
Gln/	CAA	8	7	7	11	24.8
	CAG	6	8	7	3	75.2
Glu/	GAA	26	18	18	19	39.3
	GAG	12	19	20	19	60.7
Gly/	GGA	17	3	3	1	24.1
	GGC	2	21	21	21	35.8
	GGG	3	2	2	1	24.4
	GGT	16	14	14	16	15.8

Note: In order to remove the predicted peroxisome targeting sequence found in the wildtype Yellow-Green luciferase, we have removed the C-terminal amino acid.

Amino Acid/ Codon		Number of Codons in Yellow-Green Luciferase	Number of Codons in CBR <i>luc</i> (Red)	Number of Codons in CBG99 <i>luc</i> (Green)	Number of Codons in CBG68 <i>luc</i> (Green)	Percent Use in Human Cells
His/	CAC	6	4	5	7	60.4
_	CAT	7	9	8	6	39.6
Ile/	ATA	13	0	0	0	12.9
	ATC	7	21	20	23	54.0
	ATT	19	18	18	15	33.1
Leu/	CTA	5	0	0	0	6.5
	CTC	4	11	11	12	20.8
	CTG	4	18	18	19	44.4
	CTT	13	1	1	1	11.2
	TTA	18	0	0	0	5.5
	TIG	13	25	25	23	11.5
Lys/	AAA	25	12	13	19	38.9
	AAG	12	22	22	16	61.1
Met/	ATG	11	10	10	10	100.0
Phe/	TTC	9	12	12	15	58.9
,	TTT	15	13	13	10	41.4
Pro/	CCA	9	12	12	9	25.7
,	CCC	8	1	1	2	35.3
	CCG	2	1	1	0	11.6
	CCT	9	14	14	17	27.3
Ser/	AGC	2	11	13	14	25.8
	AGT	8	3	2	1	13.0
	TCA	5	2	2	1	12.8
	TCC	2	2	2	4	24.4
	TCG	7	0	0	0	5.8
	TCT	8	11	12	11	18.2
Thr/	ACA	9	2	1	0	25.4
	ACC	1	11	11	8	40.5
	ACG	1	0	0	0	11.8
	ACT	8	11	10	14	22.4
Trp/	TGG	2	2	2	2	100.0
Tyr/	TAC	9	13	12	12	60.1
	TAT	11	7	7	7	39.9
Val/	GTA	13	2	1	1	9.3
	GTC	4	25	25	21	25.7
	GTG	11	18	19	26	48.7
	GTT	19	6	6	3	16.4
Total of Co	Num dons	ber 543	542	542	542	

 Promega Corporation
 2800
 Woods
 Hollow Road
 Madison, WI
 53711-5399
 USA

 Toll Free in USA 800-356-9526
 Phone 608-274-4330
 Fax
 608-277-2516
 www.promega.com

 Printed in USA.
 Part# TM059

 Revised 8/09
 Page 5

To reduce the potential for anomalous expression, virtually all of the known consensus transcription factor binding sites were removed. The wildtype Yellow-Green luciferase gene possessed 152 known consensus transcription factor binding sites; the resulting synthetic genes, CBR*luc* and CBG68*luc*, have two known consensus transcription factor sites (a 99% reduction), and CBG99*luc* has four (a 97% reduction; Figure 2). Finally, the synthetic genes express a luciferase enzyme without a peroxisome targeting sequence, and all synthetic genes have a Kozak consensus sequence.

Figure 2 (continued on next page). Known transcription factor binding sites in the wildtype Yellow-Green luciferase gene (Panel A), red luciferase (CBR*luc;* Panel B), green luciferase (CBG99*luc;* Panel C, next page), and green luciferase (CBG68*luc;* Panel D, next page). Most (>97%) of the known transcription factor binding sites from the wildtype Yellow-Green gene have been removed to create the synthetic Chroma-Luc[™] genes. The wildtype Yellow-Green luciferase gene (Panel A) has 152 known transcription factor binding sites.

Figure 2 (continued). Known transcription factor binding sites in the wildtype Yellow-Green luciferase gene (Panel A), red luciferase (CBR*luc*; Panel B), green luciferase (CBG99*luc*; Panel C), and green luciferase (CBG68*luc*; Panel D).

O Promega

The data in Figure 3 demonstrate that all the synthetic genes exhibit a significant increase in expression over the native gene. Figure 4 demonstrates that the synthetic Chroma-Luc[™] genes have reduced anomalous expression.

The data in Figures 3 and 4 are not corrected for photomultiplier (PMT) efficiency. To obtain a significant amount of the red-emitted light from the expression of CBR*luc*, the luminometer (more specifically, the PMT) must be selected with consideration. Generally a PMT is more sensitive in the blue to green wavelengths and least sensitive in the red wavelengths. A charged coupled device (CCD) instrument works well for detecting the Chroma-LucTM luciferases because it possesses a detection range that is more sensitive in the red spectrum.

Figure 3. Increase in expression from the synthetic Chroma-Luc™ genes. The three synthetic Chroma-Luc[™] genes and the wildtype Yellow-Green luciferase gene were independently cloned into the pGL3-Control Vector, replacing the *luc+* present in this vector. At twenty-four hours post-transfection of CHO cells an equal amount of Chroma-Glo[™] Reagent was added to the media and the cells. The relative light units were detected using a Berthold Centro LB 960 Luminometer. When compared to the wildtype Yellow-Green luciferases, the synthetic Chroma-Luc[™] luciferases, CBG68 and CBG99, display 546- and 660-fold increases in relative light units, respectively. The synthetic CBR luciferase displays a 28-fold increase in relative light units compared to the wildtype Yellow-Green luciferase. All values have been corrected for transfection efficiency but not for photomultiplier efficiency.

Figure 4. Reduction in anomalous expression for the synthetic Chroma-Luc[™] genes. The synthetic CBR*luc*, CBG68*luc*, and CBG99*luc* genes and the wildtype Yellow-Green luciferase gene were cloned into a pGL3-Control Vector (contains SV40 promoter and enhancer), a pGL3-Enhancer Vector (contains only SV40 enhancer) and pGL3-Basic Vector (no promoter or enhancer added). The vectors were transfected separately into CHO cells. At 24 hours post-transfection, an equal amount of Chroma-Glo[™] Reagent was added to the media and cells. The relative light units were collected using a Berthold Centro LB 960. Expression levels are shown as percentages of the corresponding Control vectors. The data show greatly reduced relative expression of the synthetic reporter in the absence of promoter. **Panel A.** The luciferase expression from the pGL3-Enhancer Vector with the synthetic Chroma-Luc[™] genes was reduced to an average of 1.8% of control. **Panel B.** The basal level of luciferase transcription from the pGL3-Basic Vector with the synthetic Chroma-Luc[™] genes was reduced to an average of 0.6% of control. These experiments were repeated with similar results.

Apart from the different colors of luminescence, the significant differences among the three Chroma-Luc[™] genes are at the level of DNA. CBG99*luc* and CBR*luc* have 99% DNA identity, while CBG68*luc* and CBR*luc* have 68.9% DNA identity. The two green-emitting luciferases are expressed from CBG68*luc* and CBG99*luc* and are 69.2% identical. The Chroma-Luc[™] genes CBR*luc* and CBG68*luc* are most dissimilar genetically while retaining a high degree of protein homology. These two genes express proteins that are 98.3% identical. The CBR*luc* and CBG99*luc* genes possess a high degree of protein similarity, approximately 98.5%. Finally the proteins expressed by CBG68*luc* and CBG99*luc* genes are 99.6% homologous; there is one amino acid difference.

 Promega Corporation
 2800
 Woods
 Hollow Road
 Madison, WI
 53711-5399
 USA

 Toll Free in USA 800-356-9526
 Phone 608-274-4330
 Fax
 608-277-2516
 www.promega.com

 Printed in USA.
 Part# TM059

 Revised 8/09
 Page 9

4. Chroma-Luc[™] Reporter Vector Backbones

The Chroma-Luc[™] Basic Vector series includes pCBR-Basic (Cat.# E1411), pCBG68-Basic (Cat.# E1431) and pCBG99-Basic (Cat.# E1451). No promoter or enhancer sequence has been added to the Basic series. The vector backbone is from the pGL3 series and contains a multiple cloning region for cloning regulator elements of interest.

The Chroma-Luc[™] Control Vector series includes pCBR-Control (Cat.# E1421), pCBG68-Control (Cat.# E1441) and pCBG99-Control (Cat.# E1461). These vectors contain an SV40 promoter and SV40 enhancer and have the same vector backbone as the Basic series.

SV40 Promoter and Enhancer

The Control Vectors possess an SV40 Early Promoter and an Enhancer, which have been shown to provide strong, constitutive expression in a variety of cell types. The Basic Vectors do not possess these elements. The Control Vectors contain the SV40 origin of replication within the SV40 promoter. The SV40 origin of replication results in transient, episomal replication in cells expressing the SV40 large T antigen such as COS-1 and COS-7 cells (1).

SV40 poly(A)

Polyadenylation signals cause the termination of transcription by RNA polymerase II and signal the addition of approximately 200–250 adenosine residues to the 3[°] end of the RNA transcription (2). Polyadenylation has been shown to enhance RNA stability and translation efficiency (3,4).

f1 Origin of Replication

To provide the ssDNA template (i.e., for use in mutagenesis) the Chroma-LucTM Vectors contain an origin of replication derived from filamentous phage. This allows single-stranded plasmid DNA to be produced and secreted in phage-like particles from *E. coli* infected with the appropriate helper phage. **Note:** Only the sequence of the f1 origin has been verified; no quality control assays were performed to test the functionality of this region.

5. Chroma-Luc[™] Reporter Vector Maps and Sequence Information

Figure 5. The pCBR-Basic Vector circle map. This vector contains: CBR*luc,* synthetic DNA sequence encoding the red luciferase enzyme; Amp^r, gene conferring ampicillin resistance in *E. coli*; ori, origin of plasmid replication in *E. coli*. Arrows within the CBR*luc* and Amp^r genes indicate the direction of functionality.

pCBR-Basic Vector Sequence Reference Points:

Multiple cloning region	1-58
CBRluc reporter gene	88-1716
SV40 late poly(A) region	1750-1971
Reporter Vector Primer 4 (RV Primer 4)	2039-2058
β-lactamase (Amp ^r) coding region	3058-3918
f1 origin of replication	4050-4505
Synthetic poly(A) signal	4636-4789
Reporter Vector Primer 3 (RV Primer 3)	4738-4757

Figure 6. Multiple cloning region of the pCBR-Basic Vector.

Figure 7. The pCBR-Control Vector circle map. This vector contains: CBR*luc,* synthetic cDNA sequence encoding the red luciferase enzyme; Amp^r, gene conferring ampicillin resistance in *E. coli;* ori, origin of plasmid replication in *E. coli.* Arrows within the CBR*luc* and Amp^r genes indicate the direction of functionality.

pCBR-Control Vector Sequence Reference Points:

SV40 promoter	48-250
CBRluc reporter gene	280-1908
SV40 late poly(A) region	1942-2163
SV40 Enhancer	2183-2419
Reporter Vector Primer 4 (RV Primer 4)	2477-2496
β-lactamase (Amp ^r) coding region	3496-4356
f1 origin of replication	4488-4943
Synthetic poly(A) signal	5074-5227
Reporter Vector Primer 3 (RV Primer 3)	5176-5195
GGTACCGAGCTCTTACGCGTGCTAGCCCGGGCTCG/ KpnI Sacl Mlul Nhel Smal Xhol	AGATCTGCGATCTGCA

Figure 8. Multiple cloning region of the pCBR-Control Vector.

Figure 9. The pCBG68-Basic Vector circle map. This vector contains: CBG68*luc*, synthetic cDNA sequence encoding the green 68 luciferase enzyme; Amp^r, gene conferring ampicillin resistance in *E. coli*; ori, origin of plasmid replication in *E. coli*. Arrows within the CBG68*luc* and Amp^r genes indicate the direction of functionality.

pCBG68-Basic Vector Sequence Reference Points:

Multiple cloning region	1-58
CBG68luc Reporter gene	88-1716
SV40 late poly(A) region	1764-1985
Reporter Vector Primer 3 (RV Primer 3)	2053-2072
β-lactamase (Amp ^r) coding region	3072-3932
f1 origin of replication	4064-4519
Synthetic poly(A) signal	4650-4803
Reporter Vector Primer 4 (RV Primer 4)	4752-4771

Figure 10. Multiple cloning region of the pCBG68-Basic Vector.

Figure 11. The pCBG68-Control Vector circle map. This vector contains: CBG68*luc*, synthetic DNA sequence encoding the green 68 luciferase enzyme; Amp^r, gene conferring amplicillin resistance in *E. coli*; ori, origin of plasmid replication in *E. coli*. Arrows within the CBG68*luc* and Amp^r genes indicate the direction of functionality.

pCBG68-Control Vector Sequence Reference Points:

SV40 promoter	48-250
CBG68luc Reporter gene	280-1908
SV40 late poly(A) region	1956-2177
SV40 Enhancer	2197-2433
Reporter Vector Primer 3 (RV Primer 3)	2491-2510
β-lactamase (Amp ^r) coding region	3510-4370
f1 origin of replication	4502-4957
Synthetic poly(A) signal	5088-5241
Reporter Vector Primer 4 (RV Primer 4)	5190-5209
GGTACCGAGCTCTTACGCGTGCTAGCCCGGGCTCGA	GATCTGCGATCTGCA

Figure 12. Multiple cloning region of the pCBG68-Control Vector.

Figure 13. The pCBG99-Basic Vector circle map. This vector contains: CBG99*luc*, synthetic DNA sequence encoding the green 99 luciferase enzyme; Amp^r, gene conferring ampicillin resistance in *E. coli*; ori, origin of plasmid replication in *E. coli*. Arrows within the CBG99*luc* and Amp^r genes indicate the direction of functionality.

pCBG99-Basic Vector Sequence Reference Points:

Multiple cloning region	1-58
CBG99luc reporter gene	88-1716
SV40 late poly(A) region	1747-1968
Reporter Vector Primer 4 (RV Primer 4)	2036-2055
β-lactamase (Amp ^r) coding region	3055-3915
f1 origin of replication	4047-4502
Synthetic poly(A) signal	4633-4786
Reporter Vector Primer 3 (RV Primer 3)	4735-4754

Figure 14. Multiple cloning region of the pCBG99-Basic Vector. *The MluI site is also present in the CBG99*luc* gene and should not be used for cloning into the pCBG99-Basic Vector.

 Promega Corporation
 2800
 Woods
 Hollow Road
 Madison, WI
 53711-5399
 USA

 Toll Free in USA 800-356-9526
 Phone 608-274-4330
 Fax 608-277-2516
 www.promega.com

 Printed in USA.
 Part# TM059

 Revised 8/09
 Page 15

Figure 15. The pCBG99-Control Vector circle map. This vector contains: CBG99luc, synthetic DNA sequence encoding the green 99 luciferase enzyme; Amp^r, gene conferring amplicillin resistance in *E. coli*; ori, origin of plasmid replication in *E. coli*. Arrows within the CBG99luc and Amp^r genes indicate the direction of transcription.

pCBG99-Control Vector Sequence Reference Points:

SV40 promoter	48-250		
CBG99luc Reporter gene	280-1908		
SV40 late poly(A) region	1939-2160		
SV40 Enhancer	2180-2416		
Reporter Vector Primer 3 (RV Primer 3)	2474-2493		
β-lactamase (Amp ^r) coding region	3493-4353		
f1 origin of replication	4485-4940		
Synthetic poly(A) signal	5071-5224		
Reporter Vector Primer 4 (RV Primer 4)	5173-5192		
GGTACCGAGCTCTTACGCGTGCTAGCCCGGGCTCGAGATCTGCGATCTGCA			

Figure 16. Multiple cloning region of the pCBG99-Control Vector.

*The MluI site is also present in the CBG991uc gene and should not be used for cloning into the pCBG99-Control Vector.

6. Emission Color Separation

In order to measure the different luminescent signals, filters must be used to separate the red and green Chroma-Luc[™] signals.

6.A. Filter Choices

Promega has used 510/60 nm and 610 nm long-pass filters from Chroma Corporation (Chroma Part# D510/60 and E610LP, respectively) to successfully separate the red and green luminescent signals generated by the Chroma-Luc[™] luciferases. These filters permit transmittance in the spectral region shown in Figure 17.

The 510/60 nm and 610 nm long-pass filter pair provide a balance between sensitivity and separation. This filter pair was chosen so that the two colored signals have the least amount of overlap, while permitting transmittance of the largest possible portion of each luminescent spectrum. Other filter pairs can be used if extreme separation or extreme sensitivity is critical. If extreme separation of signal is required, filter pairs may be chosen so that no green spectrum tailing is captured in the red signal. A 640 nm long-pass filter, for example, might be chosen for this application and combined with a 510/60 nm filter.

If extreme sensitivity is critical, filter pairs may be chosen so that more of each signal spectrum is transmitted. This means that more of the red luminescent signal will be transmitted through the red filter. Regardless of the filter set chosen, the luminescent signal transmittance through each filter must be calculated. Section 6.B describes the mathematical formulae that are required to separate the red and the green luminescent signals. These calculations must be performed regardless of filter choice and must be performed for each combination of filter pair and luminometer.

6.B. Data Analysis

Color Separation

Filter sets provide the ability to measure a consistent portion of the red or green luminescence generated by a sample. If the same filters are used for all measurements in an experiment, then it is not necessary to calculate the total luminescence generated by each luciferase. The relative proportion that is measured therefore can be used to calculate induction ratios and other experimentally relevant information.

Figure 17 shows the overlap of the spectra generated by the Chroma-Luc[™] luciferase enzymes in the transmittance window of two filters. Filter corrections can be made to factor out the tail of the green luminescent signal from a red luminescent measurement. A single calculation of the filter corrections is adequate for all measurements using a single luminometer or CCD camera with a particular filter set. However, measurements using a different instrument or filter set require calculation of different correction factors.

 Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA

 Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.com

 Printed in USA.

 Printed in USA.

 Revised 8/09

O Promega

Figure 17. Emission spectra for Chroma-Luc™ luciferases. Separate populations of CHO cells were transiently transfected with the Chroma-Luc™ Vectors. CBR*luc* is the DNA coding for the red-emitting luciferase, and CBG68*luc* and CBG99*luc* are the two different DNA sequences coding for the green-emitting luciferase. At 24 hours post-transfection the cells were removed by trypsin treatment, lysed by the addition of Glo Lysis Buffer (Cat.# E2661) and an equal amount of Chroma-Glo™ Reagent. The spectra data were captured using a Spex Fluorolog®-2 spectrofluorometer with the excitation source off. Emission data were collected from 450–700 nm. Maximum emission for CBG68*luc* and CBG99*luc* is 537 nm, while CBR*luc* has a maximum emission of 613 nm. The light block indicates the maximal transmittance range of a 510/60 (510±30 nm) filter.

Calculating the filter corrections (calibration constants) requires a one-time measurement of two samples of cells, one expressing only a red-emitting luciferase and the other expressing only a green-emitting luciferase. A total of 6 one-time measurements (Table 2) must be made to determine calibration constants used to normalize filter and detector efficiencies. The calibration constants should not change over time; however, these must be recalculated upon substituting filter sets, luminometers or detectors. After these calibration constants are known, the corrected red and green luminescence values (R' and G') can be determined using two experimental luminescence values (Lrf and Lgf, see Table 3) using the equations provided below.

$$R' = \frac{Lrf - [Lgf \times (Grf/Ggf)]}{(Rrf/R) - (Rgf/R) \times (Grf/Ggf)}$$

The corrected amount of red luminescence in a mixed sample, R', is calculated by subtracting the portion of the green luminescence measured using the red filter [Lgf × (Grf/Ggf)] from the amount of total luminescence measured with the red filter (Lrf) that is normalized for filter efficiencies [(Rrf/R) – (Rgf/R) × (Grf/Ggf)].

$$G' = \frac{Lgf - [R' \times (Rgf/R)]}{(Ggf/G)}$$

The corrected amount of green luminescence from the same sample, G', is calculated as the amount of total luminescence measured with the green filter (Lgf) minus the amount of corrected red luminescence (R') measured with the green filter [R' × (Rgf/R)] that has been normalized for filter efficiencies (Ggf/G).

Measurements for the calibration constants Rrf/R, Rgf/R, Grf/Ggf and Ggf/G must be made every time filter sets and/or detection equipment changes.

To assist you in the determination of corrected luminescence values, Promega has prepared the Chroma-Luc[™] Calculator, a PC-based spreadsheet. This tool is available for download at: **www.promega.com/techserv/tools/**

Name	Symbol	Measurement
Total Red Luminescence, no filter	R	No filter used. Total luminescence measured from the red-emitting luciferase.
Total Green Luminescence, no filter	G	No filter used. Total luminescence measured from the green-emitting luciferase.
Red Luminescence, using red filter	Rrf	Luminescence measured from the red-emitting luciferase. Red filter used.
Green Luminescence, using red filter	Grf	Luminescence measured from the green-emitting luciferase. Red filter used.
Red Luminescence, using green filter	Rgf	Luminescence measured from the red-emitting luciferase. Green filter used.
Green Luminescence, using green filter	Ggf	Luminescence measured from the green-emitting luciferase. Green filter used.

Table 2. Descriptions of Initial Measurements Required for Calibration Constants Used to Determine Corrected Experimental Luminescence Values from Overlapping Chroma-Luc[™] Spectra.

Table 3. Experimental Luminescence Values Required to Determine Corrected Luminescence Values, R´ and G´.

Name	Symbol	Measurement
Experimental luminescence, red filter	Lrf	Experimental luminescence measured with the red filter.
Experimental luminescence, green filter	Lgf	Experimental luminescence measured with the green filter.

7. Appendix

7.A. pCBR-Basic Vector Restriction Sites

The following restriction enzyme tables were constructed using DNASTAR® sequence analysis software. Please note that we have not verified this information by restriction digestion with each enzyme listed. The location given specifies the 3'-end of the cut DNA (the base to the left of the cut site). For more information on the cut sites of these enzymes, or if you identify a discrepancy, please contact your local Promega Branch or Distributor. In the U.S., contact Promega Technical Services at 800-356-9526. Vector sequences are also available in the GenBank® database (GenBank®/EMBL Accession Number AY258591) and online at: www.promega.com/vectors/

AatII 1 314 ClaI 3 1975, 4687, 4791 AccB7I 1 138 DraI 5 621, 1941, 2997, 3016, 3708 AccI 2 794, 1989 3016, 3708 3016, 3708 AccG 1 1 DraII 1 1258 AcyI 2 311, 3668 DraIII 2 106, 4283 Afilli 3 5, 1590, 2238 DrdI 2 2346, 4327 Alw26I 3 859, 3192, 3968 DsaI 1 86 Alw41 2 2552, 3798 EaeI 5 1055, 1733, 1737, 4629 ApaI 1 1228 EagI 3 1733, 1737, 4629 AspHI 5 11, 177, 2556, EarI 3 2122, 3926, 4564 3717, 3802 EcoHKI 1 3131 AvaI 3 26, 32, 1135 EcofZI 3 1733, 1737, 4629 BamHI 1 1982 EcoICRI 9 314, 3626 BamHI 1 1982 FseI 1 1739 4209 FspI	Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
AccB7I 1 138 DraI 5 621, 1941, 2997, 3016, 3708 AccI 2 794, 1989 3016, 3708 Acc65I 1 1 DraII 1 1258 AcyI 2 311, 3668 DraIII 2 1006, 4283 Afilli 3 5, 1590, 2238 DrdI 2 2346, 4327 Alw26I 3 859, 3192, 3968 DsaI 1 86 Alw44I 2 2552, 3798 EaeI 5 1055, 1733, 1737, 4629 ApaI 1 228 EagI 3 1733, 1737, 4629 AspHI 5 11, 177, 2556, EarI 3 2122, 3926, 4564 3717, 3802 EclHKI 1 3131 AvaI 3 26, 32, 1135 Eco471II 1 2114 AvaII 2 3269, 3491 Eco52I 3 1733, 1737, 4629 BamHI 1 1982 EcoICRI 1 9 BanHI 1 1982 FseI 1 1739 Ball 5 718, 2349, 2927, FseI	AatII	1	314	ClaI	3	1975, 4687, 4791
AccI 2 794, 1989 3016, 3708 Acc65I 1 1 DraII 1 1258 AcyI 2 311, 3668 DraIII 2 1006, 4283 AfIIII 3 5, 1590, 2238 DrdI 2 2346, 4327 Alw26I 3 859, 3192, 3968 DsaI 1 86 Alw41 2 2552, 3798 EaeI 5 1055, 1733, 1737, 4629 ApaI 1 2286 EagI 3 1733, 1737, 4629 AspHI 5 11, 177, 2556, EarI 3 2122, 3926, 4564 3717, 3802 EclHKI 1 3131 AvaI 3 26, 32, 1135 Eco47TII 1 2114 AvaII 2 3269, 3491 Eco52I 3 1733, 1737, 4629 BamHI 1 1982 EcoICRI 1 9 BanII 5 11, 33, 973, 1228, FseI 1 1739 4209 FspI 2 3353, 4526 3657, 4058 3657, 4058 BsaI 2	AccB7I	1	138	DraI	5	621, 1941, 2997,
Acc65I 1 1 DraII 1 1258 AcyI 2 311, 3668 DraIII 2 1006, 4283 AfIII 3 5, 1590, 2238 DrdI 2 2346, 4327 Alw26I 3 859, 3192, 3968 DsaI 1 86 Alw26I 3 859, 3192, 3968 DsaI 1 86 Alw41 2 2552, 3798 EaeI 5 1055, 1733, 1737, 4629 ApaI 1 1228 EagI 3 1733, 1737, 4629 AspHI 5 11, 177, 2556, EarI 3 2122, 3926, 4564 3717, 3802 EclHKI 1 3131 AvaI 3 26, 32, 1135 Eco471II 1 2114 AvaII 2 3269, 3491 Eco52I 3 1733, 1737, 4629 BamHI 1 1982 EcoICRI 1 9 BanII 5 11, 33, 973, 1228, FseI 1 1739, 1739, 4526 BbsI 3 453, 989, 2067 HaeII 4 394, 1635, 1880, 3657, 4058 Bsal </td <td>AccI</td> <td>2</td> <td>794, 1989</td> <td></td> <td></td> <td>3016, 3708</td>	AccI	2	794, 1989			3016, 3708
AcyI 2 311, 3668 DraIII 2 1006, 4283 AfIII 3 5, 1590, 2238 DrdI 2 2346, 4327 Alw26I 3 859, 3192, 3968 Dsal 1 86 Alw26I 3 859, 3192, 3968 Dsal 1 86 Alw41 2 2552, 3798 Eael 5 1055, 1733, 1737, 4629 ApaI 1 1228 EagI 3 1733, 1737, 4629 AspHI 5 11, 177, 2556, EarI 3 2122, 3926, 4564 3717, 3802 EclHKI 1 3131 AvaI 3 26, 32, 1135 Eco471II 1 2114 AvaII 2 3269, 3491 Eco52I 3 1733, 1737, 4629 BamHI 1 1982 EcoICRI 9 9 BanII 5 11, 33, 973, 1228, FseI 1 1739 4209 FspI 2 3353, 4526 13 BcII 2 8251, 4519 HgaI 5 718, 2349, 2927, 3657, 4058 BsaI 1 <td< td=""><td>Acc65I</td><td>1</td><td>1</td><td>DraII</td><td>1</td><td>1258</td></td<>	Acc65I	1	1	DraII	1	1258
AfIII 3 5, 1590, 2238 DrdI 2 2346, 4327 Alw26I 3 859, 3192, 3968 DsaI 1 86 Alw44I 2 2552, 3798 Eael 5 1055, 1733, 1737, 4629 ApaI 1 2654 3519, 4629 31733, 1737, 4629 AspHI 5 11, 177, 2556, 577, 3802 Earl 3 2122, 3926, 4564 3717, 3802 EclHKI 1 3131 AvaI 3 26, 32, 1135 Eco471II 1 2114 AvaII 2 3269, 3491 Eco52I 3 1733, 1737, 4629 BamHI 1 1982 EcoICRI 1 9 BanII 5 11, 33, 973, 1228, FseI 1 1739 4209 FspI 2 3353, 4526 Bsl 3 453, 989, 2067 HaeII 4 2116, 2486, 4125, 4125, 3657, 4058 BsaI 2 3251, 4519 HgaI 5 718, 2349, 2927, 3657, 4058 BsaI 2 859, 3192 HincII 4 399, 1635, 1880, 1990 <t< td=""><td>AcyI</td><td>2</td><td>311, 3668</td><td>DraIII</td><td>2</td><td>1006, 4283</td></t<>	AcyI	2	311, 3668	DraIII	2	1006, 4283
Alw26I 3 859, 3192, 3968 DsaI 1 86 Alw44I 2 2552, 3798 Eael 5 1055, 1733, 1737, 4629 ApaI 1 22654 31733, 1737, 4629 31733, 1737, 4629 AspHI 5 11, 177, 2556, Earl 3 2122, 3926, 4564 3717, 3802 EclHKI 1 3131 AvaI 3 26, 32, 1135 Eco47III 1 2114 AvaII 2 3269, 3491 Eco52I 3 1733, 1737, 4629 BamHI 1 1982 EcoICRI 9 9 BanII 5 11, 33, 973, 1228, 4564 1 1739 4209 FspI 2 3353, 4526 1 BsI 3 453, 989, 2067 HaeII 4 2116, 2486, 4125, 4125, 4125, 4125, 4133 BgII 2 3251, 4519 HgaI 5 718, 2349, 2927, 4058 BsaI 2 859, 3192 HincII 4 399, 1635, 1880, 1990 BsaHI 1 1981 HindIII 1 53 BsaHI	AfIIII	3	5, 1590, 2238	DrdI	2	2346, 4327
Alw44I 2 2552, 3798 Eael 5 1055, 1733, 1737, 311, 311	Alw26I	3	859, 3192, 3968	DsaI	1	86
AlwNI 1 2654 3519, 4629 Apal 1 1228 EagI 3 1733, 1737, 4629 AspHI 5 11, 177, 2556, EarI 3 2122, 3926, 4564 3717, 3802 EclHKI 1 3131 AvaI 3 26, 32, 1135 Eco47III 1 2114 AvaII 2 3269, 3491 Eco52I 3 1733, 1737, 4629 BamHI 1 1982 EcoICRI 1 9 BanII 5 11, 33, 973, 1228, 4209 FseI 1 1739 4209 FspI 2 3353, 4526 3353, 4526 BbsI 3 453, 989, 2067 HaeII 4 2116, 2486, 4125, 4125, 4125, 4125, 4133 BgII 2 3251, 4519 HgaI 5 718, 2349, 2927, 4058 BsaI 2 859, 3192 HincII 4 399, 1635, 1880, 1990 BsaII 1 1981 HindIII 1 53 BsaHI 1 1981 1 1880 BspHI 2 2958, 3966 <td>Alw44I</td> <td>2</td> <td>2552, 3798</td> <td>EaeI</td> <td>5</td> <td>1055, 1733, 1737,</td>	Alw44I	2	2552, 3798	EaeI	5	1055, 1733, 1737,
Apal 1 1228 EagI 3 1733, 1737, 4629 AspHI 5 11, 177, 2556, 3717, 3802 Earl 3 2122, 3926, 4564 3717, 3802 EclHKI 1 3131 AvaI 3 26, 32, 1135 Eco47III 1 2114 AvaI 3 26, 32, 1135 Eco47III 1 2114 AvaII 2 3269, 3491 Eco52I 3 1733, 1737, 4629 BamHI 1 1982 EcoICRI 1 9 BanII 5 11, 33, 973, 1228, 4209 FseI 1 1739 4209 FspI 2 3353, 4526 3353, 4526 BbsI 3 453, 989, 2067 HaeII 4 2116, 2486, 4125, 4125, 4133 BgII 2 3251, 4519 HgaI 5 718, 2349, 2927, 3657, 4058 BsaI 2 859, 3192 HincII 4 399, 1635, 1880, 1990 BsaII 1 1981 HindIII 1 53 BsaHI 2 311, 3668 1990 11 53	AlwNI	1	2654			3519, 4629
AspHI 5 11, 177, 2556, 3717, 3802 EarI 3 2122, 3926, 4564 AvaI 3 26, 32, 1135 EcdHKI 1 3131 AvaI 3 26, 32, 1135 Eco47III 1 2114 AvaII 2 3269, 3491 Eco52I 3 1733, 1737, 4629 BamHI 1 1982 EcoICRI 1 9 BanII 5 11, 33, 973, 1228, 4209 FseI 1 1739 BarlI 2 3251, 4519 HgaI 2 3353, 4526 BbsI 3 453, 989, 2067 HaeII 4 2116, 2486, 4125, 4133 BgII 2 3251, 4519 HgaI 5 718, 2349, 2927, 3657, 4058 BsaI 2 859, 3192 HincII 4 399, 1635, 1880, 1990 BsaII 1 1981 HindIII 1 53 BsaFII 1 1224 HindIIII 1 53 BsaPHI 2 2958, 3966 HpaI 1 1880 BspHI 1 1981 KpnI 1	ApaI	1	1228	EagI	3	1733, 1737, 4629
3717, 3802 EclHKI 1 3131 AvaI 3 26, 32, 1135 Eco47III 1 2114 AvaII 2 3269, 3491 Eco52I 3 1733, 1737, 4629 BamHI 1 1982 EcoICRI 1 9 BanII 5 11, 33, 973, 1228, 4209 FseI 1 1739 BbsI 3 453, 989, 2067 HaeII 4 2116, 2486, 4125, 4125, 4133 BgII 2 3251, 4519 HgaI 5 718, 2349, 2927, 3657, 4058 BsaI 2 3251, 4519 HgaI 5 718, 2349, 2927, 4058 BsaI 2 859, 3192 HincII 4 399, 1635, 1880, 1990 BsaII 1 1981 HindIII 4 399, 1635, 1880, 1990 BsaBI 1 1981 HindIII 1 53 BspHI 2 2958, 3966 HpaI 1 1880 BspHI 1 1981 KpnI 1 5 BssSI 3 976, 2411, 3795 MIuI 1 15 <td>AspHI</td> <td>5</td> <td>11, 177, 2556,</td> <td>EarI</td> <td>3</td> <td>2122, 3926, 4564</td>	AspHI	5	11, 177, 2556,	EarI	3	2122, 3926, 4564
Aval 3 26, 32, 1135 Eco47III 1 2114 AvaII 2 3269, 3491 Eco52I 3 1733, 1737, 4629 BamHI 1 1982 EcoICRI 1 9 BanII 5 11, 33, 973, 1228, 4209 Fsel 1 1739 BbsI 3 453, 989, 2067 HaeII 4 2116, 2486, 4125, 4133 BgII 2 3251, 4519 HgaI 5 718, 2349, 2927, 3657, 4058 BsaI 2 3251, 4519 HgaI 5 718, 2349, 2927, 3657, 4058 BsaI 2 3251, 4519 HgaI 5 718, 2349, 2927, 4058 BsaI 2 859, 3192 HincII 4 399, 1635, 1880, 1990 BsaAI 1 4280 1990 1990 1990 BsaBI 1 1981 HindIII 1 53 BspHI 2 2958, 3966 HpaI 1 1880 BspHI 1 1981 KpnI 1 5 BssSI 3 976, 2411, 3795 MIuI <t< td=""><td></td><td></td><td>3717, 3802</td><td>EclHKI</td><td>1</td><td>3131</td></t<>			3717, 3802	EclHKI	1	3131
AvaII 2 3269, 3491 Eco52I 3 1733, 1737, 4629 BamHI 1 1982 EcoICRI 1 9 BanII 5 11, 33, 973, 1228, 4209 Fsel 1 1739, 4529 BbsI 3 453, 989, 2067 HaeII 4 2116, 2486, 4125, 4133 BgII 2 3251, 4519 HgaI 5 718, 2349, 2927, 3657, 4058 BsaI 2 3251, 4519 HgaI 5 718, 2349, 2927, 3657, 4058 BsaI 2 859, 3192 HincII 4 399, 1635, 1880, 1990 BsaAI 1 4280 1990 1990 BsaBI 1 1981 HindIII 4 399, 1635, 1880, 1990 BspHI 2 2958, 3966 HpaI 1 1880 BspHI 2 2958, 3966 HpaI 1 1880 BspMI 1 4759 Hsp92I 2 311, 3668 BsrBRI 1 1981 KpnI 1 5 BssSI 3 976, 2411, 3795 MIuI 1	AvaI	3	26, 32, 1135	Eco47III	1	2114
BamHI 1 1982 EcoICRI 1 9 BanII 5 11, 33, 973, 1228, 4209 Fsel 1 1739 BbsI 3 453, 989, 2067 HaeII 4 2116, 2486, 4125, 4133 BclI 2 3251, 4519 HgaI 5 718, 2349, 2927, 3657, 4058 BgII 2 3251, 4519 HgaI 5 718, 2349, 2927, 3657, 4058 BsaI 2 859, 3192 HincII 4 399, 1635, 1880, 1990 BsaAI 1 4280 1990 1990 BsaBI 1 1981 HindIII 4 399, 1635, 1880, 1990 BsaHI 2 311, 3668 1990 1990 BsaHI 1 1224 HindIII 1 53 BspHI 2 2958, 3966 HpaI 1 1880 BspMI 1 4759 Hsp92I 2 311, 3668 BsrBRI 1 1981 KpnI 1 5 BssSI 3 976, 2411, 3795 MIuI 1 15 B	AvaII	2	3269, 3491	Eco52I	3	1733, 1737, 4629
BanII 5 11, 33, 973, 1228, 4209 Fsel 1 1739 BbsI 3 453, 989, 2067 HaeII 4 2116, 2486, 4125, 4133 BcII 2 3251, 4519 HgaI 5 718, 2349, 2927, 3657, 4058 BgaII 2 3251, 4519 HgaI 5 718, 2349, 2927, 3657, 4058 BsaI 2 859, 3192 HincII 4 399, 1635, 1880, 1990 BsaII 1 4280 1990 BsaBI 1 1981 HindIII 4 399, 1635, 1880, 1990 BsaHI 2 311, 3668 1990 314, 3668 1990 BspHI 2 2958, 3966 HpaI 1 1880 BspHI 2 2958, 3966 HpaI 1 1880 BspHI 1 1981 KpnI 1 5 BsrBRI 1 1981 KpnI 1 5 BsrSI 3 976, 2411, 3795 MIuI 1 15 BstXI 1 292 NciI 5 27, 28, 2618, 314, 3665	BamHI	1	1982	EcoICRI	1	9
4209 FspI 2 3353, 4526 BbsI 3 453, 989, 2067 HaeII 4 2116, 2486, 4125, 4133 BcII 2 882, 1400 4133 3 BgII 2 3251, 4519 HgaI 5 718, 2349, 2927, 3657, 4058 BsaI 2 859, 3192 HincII 4 399, 1635, 1880, 1990 BsaAI 1 4280 1990 1990 BsaBI 1 1981 HindIII 4 399, 1635, 1880, 1990 BsaHI 2 311, 3668 1990 1990 BspHI 2 2958, 3966 HpaI 1 1880 BspHI 2 2958, 3966 HpaI 1 1880 BspHI 1 1981 KpnI 1 5 BsrBRI 1 1981 KpnI 1 5 BsrSI 3 976, 2411, 3795 MIuI 1 15 BstXI 1 292 NciI 5 27, 28, 2618, 314, 3665	BanII	5	11, 33, 973, 1228,	FseI	1	1739
BbsI 3 453, 989, 2067 HaeII 4 2116, 2486, 4125, 4133 BcII 2 882, 1400 4133 BgII 2 3251, 4519 HgaI 5 718, 2349, 2927, 3657, 4058 BsaI 2 859, 3192 HincII 4 399, 1635, 1880, 1990 BsaI 2 859, 3192 HindIII 4 399, 1635, 1880, 1990 BsaBI 1 4280 1990 1990 BsaHI 2 311, 3668 1990 Bsp120I 1 1224 HindIII 1 53 BspHI 2 2958, 3966 HpaI 1 1880 BspHI 1 4759 Hsp92I 2 311, 3668 BsrBRI 1 1981 KpnI 1 5 BsrSI 3 976, 2411, 3795 MIuI 1 15 BstXI 1 292 NciI 5 27, 28, 2618, 314, 3665			4209	FspI	2	3353, 4526
BclI 2 882, 1400 4133 BgII 2 3251, 4519 HgaI 5 718, 2349, 2927, 3657, 4058 BgII 1 36 3657, 4058 3657, 4058 BsaI 2 859, 3192 HincII 4 399, 1635, 1880, 1990 BsaII 1 4280 1990 1990 BsaHI 2 311, 3668 1990 Bsp120I 1 1224 HindIII 1 53 BspHI 2 2958, 3966 HpaI 1 1880 BspMI 1 4759 Hsp92I 2 311, 3668 BsrBRI 1 1981 KpnI 1 5 BssSI 3 976, 2411, 3795 MIuI 1 15 BstXI 1 292 NciI 5 27, 28, 2618, 3314, 3665	BbsI	3	453, 989, 2067	HaeII	4	2116, 2486, 4125,
BgII 2 3251, 4519 HgaI 5 718, 2349, 2927, 3657, 4058 BgIII 1 36 3657, 4058 BsaI 2 859, 3192 HincII 4 399, 1635, 1880, 1990 BsaII 1 4280 1990 1990 BsaHI 2 311, 3668 1990 BspHI 2 2958, 3966 HpaI 1 53 BspHI 2 2958, 3966 HpaI 1 1880 BspHI 1 4759 Hsp92I 2 311, 3668 BsrBRI 1 1981 KpnI 1 5 BssSI 3 976, 2411, 3795 MIuI 1 15 BstXI 1 292 NciI 5 27, 28, 2618, 3314, 3665	BclI	2	882, 1400			4133
BgIII 1 36 3657, 4058 BsaI 2 859, 3192 HincII 4 399, 1635, 1880, BsaAI 1 4280 1990 BsaBI 1 1981 HindII 4 399, 1635, 1880, BsaHI 2 311, 3668 1990 BspHI 2 311, 3668 1990 BspHI 2 2958, 3966 HpaI 1 53 BspHI 2 2958, 3966 HpaI 1 1880 BspMI 1 4759 Hsp92I 2 311, 3668 BsrBRI 1 1981 KpnI 1 5 BssSI 3 976, 2411, 3795 MIuI 1 15 BstXI 1 292 NciI 5 27, 28, 2618, 3314, 3665	BglI	2	3251, 4519	HgaI	5	718, 2349, 2927,
BsaI 2 859, 3192 HincII 4 399, 1635, 1880, 1990 BsaAI 1 4280 1990 BsaBI 1 1981 HindII 4 399, 1635, 1880, 1990 BsaHI 2 311, 3668 1990 Bsp120I 1 1224 HindIII 1 53 BspHI 2 2958, 3966 HpaI 1 1880 BspMI 1 4759 Hsp92I 2 311, 3668 BsrBRI 1 1981 KpnI 1 5 BssSI 3 976, 2411, 3795 MIuI 1 15 BstXI 1 292 NciI 5 27, 28, 2618, 314, 3665	BglII	1	36			3657, 4058
BsaAI 1 4280 1990 BsaBI 1 1981 HindII 4 399, 1635, 1880, BsaHI 2 311, 3668 1990 Bsp120I 1 1224 HindIII 1 53 BspHI 2 2958, 3966 HpaI 1 1880 BspMI 1 4759 Hsp92I 2 311, 3668 BsrBRI 1 1981 KpnI 1 5 BssSI 3 976, 2411, 3795 MluI 1 15 BstXI 1 292 NciI 5 27, 28, 2618, 314, 3665 BstZI 3 1733, 1737, 4629 3314, 3665 314, 3665	BsaI	2	859, 3192	HincII	4	399, 1635, 1880,
BsaBI 1 1981 HindII 4 399, 1635, 1880, BsaHI 2 311, 3668 1990 Bsp120I 1 1224 HindIII 1 53 BspHI 2 2958, 3966 HpaI 1 1880 BspMI 1 4759 Hsp92I 2 311, 3668 BsrBRI 1 1981 KpnI 1 5 BssSI 3 976, 2411, 3795 MluI 1 15 BstXI 1 292 NciI 5 27, 28, 2618, BstZI 3 1733, 1737, 4629 3314, 3665 314, 3665	BsaAI	1	4280			1990
BsaHI 2 311, 3668 1990 Bsp120I 1 1224 HindIII 1 53 BspHI 2 2958, 3966 HpaI 1 1880 BspMI 1 4759 Hsp92I 2 311, 3668 BsrBRI 1 1981 KpnI 1 5 BssSI 3 976, 2411, 3795 MluI 1 15 BstXI 1 292 NciI 5 27, 28, 2618, BstZI 3 1733, 1737, 4629 3314, 3665 314, 3665	BsaBI	1	1981	HindII	4	399, 1635, 1880,
Bsp120I 1 1224 HindIII 1 53 BspHI 2 2958, 3966 HpaI 1 1880 BspMI 1 4759 Hsp92I 2 311, 3668 BsrBRI 1 1981 KpnI 1 5 BsrSSI 3 976, 2411, 3795 MluI 1 15 BstXI 1 292 NciI 5 27, 28, 2618, BstZI 3 1733, 1737, 4629 3314, 3665 3314, 3665	BsaHI	2	311, 3668			1990
BspHI 2 2958, 3966 HpaI 1 1880 BspMI 1 4759 Hsp92I 2 311, 3668 BsrBRI 1 1981 KpnI 1 5 BssSI 3 976, 2411, 3795 MluI 1 15 BstXI 1 292 NciI 5 27, 28, 2618, BstZI 3 1733, 1737, 4629 3314, 3665 314, 3665	Bsp120I	1	1224	HindIII	1	53
BspMI 1 4759 Hsp92I 2 311, 3668 BsrBRI 1 1981 KpnI 1 5 BssSI 3 976, 2411, 3795 MluI 1 15 BstXI 1 292 NciI 5 27, 28, 2618, BstZI 3 1733, 1737, 4629 3314, 3665 314, 3665	BspHI	2	2958, 3966	HpaI	1	1880
BsrBRI 1 1981 KpnI 1 5 BssSI 3 976, 2411, 3795 MluI 1 15 BstXI 1 292 NciI 5 27, 28, 2618, 3314, 3665	BspMI	1	4759	Hsp92I	2	311, 3668
BssSI 3 976, 2411, 3795 MluI 1 15 BstXI 1 292 NciI 5 27, 28, 2618, 3314, 3665 BstZI 3 1733, 1737, 4629 3314, 3665	BsrBRI	1	1981	KpnI	1	5
BstXI 1 292 Ncil 5 27, 28, 2618, BstZI 3 1733, 1737, 4629 3314, 3665	BssSI	3	976, 2411, 3795	MluI	1	15
BstZI 3 1733, 1737, 4629 3314, 3665	BstXI	1	292	NciI	5	27, 28, 2618,
	BstZI	3	1733, 1737, 4629			3314, 3665

Table 4. Restriction Enzymes That Cut the pCBR-Basic Vector Between 1 and 5 Times.

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
NcoI	1	86	SalI	1	1988
NheI	1	21	ScaI	3	1609, 3611, 4694
NotI	1	4629	SinI	2	3269, 3491
NruI	2	1205, 1472	SmaI	1	28
NsiI	1	1468	SrfI	1	28
NspI	1	2242	SspI	5	477, 555, 3935,
PaeR7I	1	32			4488, 4603
PflMI	1	138	StyI	3	86, 206, 1301
Ppu10I	1	1464	VspI	1	3303
PshAI	1	2053	XbaI	1	1720
PspAI	1	26	XhoI	1	32
PvuI	2	3501, 4547	XmaI	1	26
PvuII	2	768, 1432	XmnI	1	3730
SacI	1	11			

Table 4. Restriction Enzymes That Cut the pCBR-Basic Vector Between 1 and 5 Times (continued).

Table 5. Restriction Enz	ymes That Do Not Cut the	pCBR-Basic Vector.
--------------------------	--------------------------	--------------------

AccIII	BsrGI	EcoRI	PpuMI	SplI
AflII	BssHII	EcoRV	Psp5II	Sse8387I
AgeI	Bst1107I	EheI	PstI	StuI
AscI	Bst98I	I-PpoI	RsrII	SwaI
AvrII	BstEII	KasI	SacII	Tth111I
Ball	Bsu36I	NarI	SfiI	XcmI
BbeI	CspI	NdeI	SgfI	
BbrPI	Csp45I	PacI	SgrAI	
BbuI	Eco72I	PinAI	SnaBI	
BlpI	Eco81I	PmeI	SpeI	
Bpu1102I	EcoNI	PmlI	SphI	

Table 6. Restriction Enzymes That Cut the pCBR-Basic Vector 6 or More Times.

Acil	BstOI	HinfI	MspI	ScrFI
AluI	BstUI	HpaII	MspA1I	SfaNI
BanI	CfoI	HphI	NaeI	TaqI
BbvI	Cfr10I	Hsp92II	NdeII	TfiI
BsaJI	DdeI	MaeI	NgoMIV	Tru9I
BsaOI	DpnI	MaeII	NlaIII	XhoII
BsaMI	DpnII	MaeIII	NlaIV	
Bsp1286I	FokI	MboI	PleI	
BsrI	Fnu4HI	MboII	RsaI	
BsrSI	HaeIII	MnlI	Sau3AI	
Bst71I	HhaI	MseI	Sau96I	

Note: The enzymes listed in boldface type are available from Promega.

 Promega Corporation
 2800
 Woods
 Hollow Road
 Madison, WI
 53711-5399
 USA

 Toll Free in USA 800-356-9526
 Phone 608-274-4330
 Fax 608-277-2516
 www.promega.com

 Printed in USA.
 Part# TM059

 Revised 8/09
 Page 21

7.B. pCBR-Control Vector Restriction Sites

The following restriction enzyme tables were constructed using DNASTAR® sequence analysis software. Please note that we have not verified this information by restriction digestion with each enzyme listed. The location given specifies the 3'-end of the cut DNA (the base to the left of the cut site). For more information on the cut sites of these enzymes, or if you identify a discrepancy, please contact your local Promega Branch or Distributor. In the U.S., contact Promega Technical Services at 800-356-9526. Vector sequences are also available in the GenBank® database (GenBank®/EMBL Accession Number AY258592) and online at: www.promega.com/vectors/

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
AatII	1	506	BstZI	3	1925, 1929, 5067
AccB7I	1	330	ClaI	3	2167, 5125, 5229
AccI	2	986, 2427	DraI	5	813, 2133, 3435,
Acc65I	1	1			3454, 4146
AcyI	2	503, 4106	DraII	1	1450
AflIII	3	15, 1782, 2676	DraIII	2	1198, 4721
Alw26I	3	1051, 3630, 4406	DrdI	2	2784, 4765
Alw44I	2	2990, 4236	DsaI	1	278
AlwNI	1	3092	EaeI	5	1247, 1925, 1929,
ApaI	1	1420			3957, 5067
AspHI	5	11, 369, 2994,	EagI	3	1925, 1929, 5067
		4155, 4240	EarI	3	2560, 4364, 5002
AvaI	3	26, 32, 1327	EclHKI	1	3569
AvaII	2	3707, 3929	Eco47III	1	2552
AvrII	1	229	Eco52I	3	1925, 1929, 5067
BamHI	1	2420	EcoICRI	1	9
BanII	5	11, 33, 1165	FseI	1	1931
		1420, 4647	FspI	2	3791, 4964
BbsI	3	645, 1181, 2505	HaeII	4	2554, 2924, 4563,
BbuI	2	2278, 2350			4571
BclI	2	1074, 1592	HgaI	5	910, 2787, 3365,
BglI	3	182, 3689, 4957			4095, 4496
BglII	1	36	HincII	4	591, 1827, 2072,
BsaI	2	1051, 3630			2428
BsaAI	1	4718	HindII	4	591, 1827, 2072,
BsaBI	2	48, 2173			2428
BsaHI	2	503, 4106	HindIII	1	245
Bsp120I	1	1416	HpaI	1	2072
BspHI	2	3396 , 4404	Hsp92I	2	503, 4106
BspMI	1	5197	KpnI	1	5
BsrBRI	2	48, 2173	MluI	1	15
BssSI	3	168, 2849, 4233	NciI	5	27, 28, 3056,
BstXI	1	484			3752, 4103

Table 7. Restriction Enzymes That Cut the pCBR-Control Vector Between 1 and 5 Times.

 Promega Corporation
 2800
 Woods
 Hollow Road
 Madison,
 WI
 53711-5399
 USA

 Toll Free in USA 800-356-9526
 Phone 608-274-4330
 Fax 608-277-2516
 www.promega.com

 Part# TM059
 Printed in USA.
 Revised 8/09

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
NcoI	1	278	SfiI	1	182
NheI	1	21	SinI	2	3707, 3929
NotI	1	5067	SmaI	1	28
NruI	2	1397, 1664	SphI	2	2278, 2350
NsiI	3	1660, 2276, 2348,	SrfI	1	28
NspI	3	2278, 2350, 2680	SspI	5	669, 747, 4373,
PaeR7I	1	32			4926, 5041
PflMI	1	330	StuI	1	228
Ppu10I	3	1656, 2272, 2344	StyI	4	229, 278, 398,
PshAI	1	2491			1493
PspAI	1	26	VspI	1	3741
PvuI	2	3939, 4985	XbaI	1	1912
PvuII	2	960, 1624	XhoI	1	32
SacI	1	11	XmaI	1	26
SalI	1	2426	XmnI	1	4168
ScaI	3	1801, 4049, 5132			

Table 7. Restriction Enzymes That Cut the pCBR-Control Vector Between 1 and 5 Times (continued).

|--|

AccIII	BsrGI	EcoNI	PmeI	SpeI
AflII	BssHII	EcoRI	PmlI	SplI
AgeI	Bst1107I	EcoRV	PpuMI	Sse8647I
AscI	Bst98I	EheI	Psp5II	SwaI
BalI	BstEII	I-PpoI	PstI	Tth111I
BbeI	Bsu36I	KasI	RsrII	XcmI
BbrPI	CspI	NarI	SacII	
BlpI	Csp45I	NdeI	SgfI	
Bpu1102I	Eco72I	PacI	SgrAI	
Bpu1268I	Eco81I	PinAI	SnaBI	

Table 9.	Restriction	Enzymes	That	Cut the	pCBR-	Control	Vector	6 or More	Times.
----------	-------------	---------	------	---------	-------	---------	--------	-----------	--------

AciI	Bst71I	HhaI	MseI	Sau96I
AluI	BstOI	HinfI	MspI	ScrFI
BanI	BstUI	HpaII	MspA1I	SfaNI
BbvI	CfoI	HphI	NaeI	TaqI
BsaOI	Cfr10I	Hsp92II	NdeII	Tfil
BsaJI	DdeI	MaeI	NgoMIV	Tru9I
BsaMI	DpnI	MaeII	NlaIII	XhoII
BsmI	DpnII	MaeIII	NlaIV	
Bsp1286I	Fnu4HI	MboI	PleI	
BsrI	FokI	MboII	RsaI	
BsrSI	HaeIII	MnlI	Sau3AI	

Note: The enzymes listed in bold face type are available from Promega Corporation.

 Promega Corporation
 2800
 Woods
 Hollow Road
 Madison, WI
 53711-5399
 USA

 Toll Free in USA 800-356-9526
 Phone 608-274-4330
 Fax 608-277-2516
 www.promega.com

 Printed in USA.
 Part# TM059

 Revised 8/09
 Page 23

7.C. pCBG68-Basic Vector Restriction Sites

The following restriction enzyme tables were constructed using DNASTAR® sequence analysis software. Please note that we have not verified this information by restriction digestion with each enzyme listed. The location given specifies the 3'-end of the cut DNA (the base to the left of the cut site). For more information on the cut sites of these enzymes, or if you identify a discrepancy, please contact your local Promega Branch or Distributor. In the U.S., contact Promega Technical Services at 800-356-9526. Vector sequences are also available in the GenBank® database (GenBank®/EMBL Accession Number AY258593) and online at: www.promega.com/vectors/

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
AatII	1	218	BstXI	2	292, 1044
AccI	2	1571, 2003	BstZI	3	1747, 1751, 4643
Acc65I	1	1	ClaI	3	1989, 4701, 4805
AcyI	3	215, 1622, 3682	Csp45I	1	254
AfIIII	2	15, 2252	DraI	4	1955, 3011, 3030,
AgeI	1	1657			3722
Alw44I	2	2566, 3812	DraII	2	1257, 1258
AlwNI	1	2668	DraIII	1	4297
ApaI	2	1228, 1261	DrdI	3	1480, 2360, 4341
AvaI	2	26, 32	DsaI	2	86, 558
AvaII	2	3283, 3505	EagI	3	1747, 1751, 4643
Ball	1	1036	EarI	4	172, 2136, 3940,
BamHI	1	1996			4578
BanII	5	11, 33, 1228,	EclHKI	1	3145
		1261, 4223	Eco47III	1	2128
BbsI	3	149, 1714, 2081	Eco52I	3	1747, 1751, 4643
BclI	1	932	EcoICRI	1	9
BglI	2	3265, 4533	FseI	1	1753
BglII	1	36	FspI	2	3367, 4540
BlpI	1	1061	HincII	3	981, 1894, 2004
Bpu1102I	1	1061	HindII	3	981, 1894, 2004
BsaI	3	1201, 1272, 3206	HindIII	1	53
BsaAI	2	1281, 4294	HpaI	1	1894
BsaBI	1	1995	Hsp92I	3	215, 1622, 3682
BsaHI	3	215, 1622, 3682	KpnI	1	5
BsaMI	3	60, 1815, 1908	MluI	1	15
BsmI	3	60, 1815, 1908	MspA1I	5	154, 1088, 2594,
Bsp120I	2	1224, 1257			2839, 3780
BspHI	3	1725, 2972, 3980	NaeI	3	1751, 2122, 4191
BspMI	1	4773	NcoI	1	86
BsrBRI	1	1995	NgoMIV	3	1749, 2120, 4189
BssSI	4	208, 752, 2425,	NheI	1	21
		3809	NotI	1	4643

Table 10. Restriction Enzymes That Cut the pCBG68-Basic Vector Between 1 and 5 Times.

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
NspI	1	2256	SrfI	1	28
PaeR7I	1	32	SspI	3	3949, 4502, 4617
PinAI	1	1657	StyI	1	86
PshAI	1	2067	TfiI	4	403, 1636, 2227,
PspAI	1	26			4698
PvuI	3	1386, 3515, 4561	VspI	1	3317
SacI	1	11	XbaI	1	1734
SalI	1	2002	XhoI	1	32
ScaI	2	3625, 4708	XmaI	1	26
SinI	2	3283, 3505	XmnI	1	3744
SmaI	1	28			

Table 10. Restriction Enzymes That Cut the pCBG68-Basic Vector Between 1 and 5 Times (continued).

Table 11. Restriction Enzymes That Do Not Cut the pCBG68-Basic Vector.

AccB7I	Bst98I	KasI	Psp5II	SplI
AccIII	BstEII	NarI	PstI	Sse8387I
AflII	Bsu36I	NdeI	PvuII	StuI
AscI	CspI	NruI	RsrII	SwaI
AvrII	Eco72I	NsiI	SacII	Tth111I
BbeI	Eco81I	PacI	SfiI	XcmI
BbrPI	EcoNI	PflMI	SgfI	
BbuI	EcoRI	PmeI	SgrAI	
BsrGI	EcoRV	PmlI	SnaBI	
BssHII	EheI	Ppu10I	SpeI	
Bst1107I	I-PpoI	PpuMI	SphI	

Table 12. Restriction Enzymes That Cut the pCBG68-Basic Vector 6 or More Times.

AciI	Bst71I	HaeII	MboI	Sau3AI
AluI	BstOI	HaeIII	MboII	Sau96I
Alw26I	BstUI	HgaI	MnlI	ScrFI
AspHI	CfoI	HhaI	MseI	SfaNI
BanI	Cfr10I	HinfI	MspI	TaqI
BbvI	DdeI	HpaII	NciI	Tru9I
BsaOI	DpnI	HphI	NdeII	XhoII
BsaJI	DpnII	Hsp92II	NlaIII	
Bsp1286I	EaeI	MaeI	NlaIV	
BsrI	Fnu4HI	MaeII	PleI	
BsrSI	FokI	MaeIII	RsaI	

Note: The enzymes listed in bold face type are available from Promega Corporation.

7.D. pCBG68-Control Vector Restriction Sites

The following restriction enzyme tables were constructed using DNASTAR® sequence analysis software. Please note that we have not verified this information by restriction digestion with each enzyme listed. The location given specifies the 3'-end of the cut DNA (the base to the left of the cut site). For more information on the cut sites of these enzymes, or if you identify a discrepancy, please contact your local Promega Branch or Distributor. In the U.S., contact Promega Technical Services at 800-356-9526. Vector sequences are also available in the GenBank® database (GenBank®/EMBL Accession Number AY258594) and online at: www.promega.com/vectors/

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
AatII	1	410	BssSI	4	400, 944, 2863,
AccI	2	1763, 2441			4247
Acc65I	1	1	BstXI	2	484, 1236
AcyI	3	407, 1814, 4120	BstZI	3	1939, 1943, 5081
AflIII	2	15, 2690	ClaI	3	2181, 5139, 5243
AgeI	1	1849	Csp45I	1	446
Alw44I	2	3004, 4250	DraI	4	2147, 3449, 3468,
AlwNI	1	3106			4160
ApaI	2	1420, 1453	Drall	2	1449, 1450
AvaI	2	26, 32	DraIII	1	4735
AvaII	2	3721, 3943	DrdI	3	1672, 2798, 4779
AvrII	1	229	DsaI	2	278, 750
Ball	1	1228	EagI	3	1939, 1943, 5081
BamHI	1	2434	EarI	4	364, 2574, 4378,
BanII	5	11, 33, 1420,			5016
		1453, 4661	EclHKI	1	3583
BbsI	3	341, 1906, 2519	Eco47III	1	2566
BbuI	2	2292, 2364	Eco52I	3	1939, 1943, 5081
BclI	1	1124	EcoICRI	1	9
BglI	3	182, 3703, 4971	FseI	1	1945
BglII	1	36	FspI	2	3805, 4978
BlpI	1	1253	HincII	3	1173, 2086, 2442
Bpu1102I	1	1253	HindII	3	1173, 2086, 2442
BsaI	3	1393, 1464, 3644	HindIII	1	245
BsaAI	2	1473, 4732	HpaI	1	2086
BsaBI	2	48, 2187	Hsp92I	3	407, 1814, 4120
BsaHI	3	407, 1814, 4120	KpnI	1	5
BsaMI	3	252, 2007, 2100	MluI	1	15
BsmI	3	252, 2007, 2100	NaeI	3	1943, 2560, 4629
Bsp120I	2	1416, 1449	NcoI	1	278
BspHI	3	1917, 3410, 4418	NgoMIV	3	1941, 2558, 4627
BspMI	1	5211	NheI	1	21
BsrBRI	2	48, 2187	NotI	1	5081

Table 13. Restriction Enzymes That Cut the pCBG68-Control Vector Between 1 and 5 Times.

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
NsiI	2	2290, 2362	SmaI	1	28
NspI	3	2292, 2364, 2694	SphI	2	2292, 2364
PaeR7I	1	32	SrfI	1	28
PinAI	1	1849	SspI	3	4387, 4940, 5055
Ppu10I	2	2286, 2358	StuI	1	228
PshAI	1	2505	StyI	2	229, 278
PspAI	1	26	TfiI	4	595, 1828, 2665,
PvuI	3	1578, 3953, 4999			5136
SacI	1	11	VspI	1	3755
SalI	1	2440	XbaI	1	1926
ScaI	2	4063, 5146	XhoI	1	32
SfiI	1	182	XmaI	1	26
SinI	2	3721, 3943	XmnI	1	4182

Table 13. Restriction Enzymes That Cut the pCBG68-Control Vector Between 1 and 5 Times (continued).

Table 14. Restriction Enzymes That Do Not Cut the pCBG68-Control Vector.

AccB7I	Bst98I	EheI	PmlI	SnaBI
AccIII	BstEII	I-PpoI	PpuMI	SpeI
AflII	Bsu36I	KasI	Psp5II	SplI
AscI	CspI	NarI	PstI	Sse8387I
BbeI	Eco72I	NdeI	PvuII	SwaI
BbrPI	Eco81I	NruI	RsrII	Tth111I
BsrGI	EcoNI	PacI	SacII	XcmI
BssHII	EcoRI	PflMI	SgfI	
Bst1107I	EcoRV	PmeI	SgrAI	

Table 15. Restriction Enzymes That Cut the pCBG68-Control Vector 6 or More Times.

AciI	Bst71I	HaeII	MboI	RsaI
AluI	BstOI	HaeIII	MboII	Sau3AI
Alw26I	BstUI	HgaI	MnlI	Sau96I
AspHI	CfoI	HhaI	MseI	ScrFI
BanI	Cfr10I	HinfI	MspI	SfaNI
BbvI	DdeI	HpaII	MspA1I	TaqI
BsaOI	DpnI	HphI	NciI	Tru9I
BsaJI	DpnII	Hsp92II	NdeII	XhoII
Bsp1286I	EaeI	MaeI	NlaIII	
BsrI	Fnu4HI	MaeII	NlaIV	
BsrSI	FokI	MaeIII	PleI	

Note: The enzymes listed in bold face type are available from Promega Corporation.

7.E. pCBG99-Basic Vector Restriction Sites

The following restriction enzyme tables were constructed using DNASTAR® sequence analysis software. Please note that we have not verified this information by restriction digestion with each enzyme listed. The location given specifies the 3'-end of the cut DNA (the base to the left of the cut site). For more information on the cut sites of these enzymes, or if you identify a discrepancy, please contact your local Promega Branch or Distributor. In the U.S., contact Promega Technical Services at 800-356-9526. Vector sequences are also available in the GenBank® database (GenBank®/EMBL Accession Number AY258595) and online at: www.promega.com/vectors/

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
AatII	1	314	ClaI	3	1972, 4684, 4788
AccB7I	1	138	DraI	5	621, 1938, 2994,
AccI	2	794, 1986			3013, 3705
Acc65I	1	1	DraII	1	1258
AcyI	2	311, 3665	DraIII	2	1006, 4280
AflIII	4	15, 753, 1590,	DrdI	2	2343, 4324
		2235	DsaI	1	86
Alw26I	3	859, 3189, 3965	EaeI	5	1055, 1730, 1734,
Alw44I	2	2549, 3795			3516, 4626
AlwNI	1	2651	EagI	3	1730, 1734, 4626
ApaI	1	1228	EarI	3	2119, 3923, 4561
AspHI	5	11, 177, 2553,	EclHKI	1	3128
		3714, 3799	Eco47III	2	1119, 2111
AvaI	3	26, 32, 1135	Eco52I	3	1730, 1734, 4626
AvaII	2	3266, 3488	EcoICRI	1	9
BamHI	1	1979	FseI	1	1736
BanII	5	11, 33, 973, 1228,	FspI	2	3350, 4523
		4206	HaeII	5	1121, 2113, 2483,
BbsI	3	453, 989, 2064			4122, 4130
BclI	2	882, 1400	HgaI	5	718, 2346, 2924,
BglI	2	3248, 4516			3654, 4055
BglII	1	36	HincII	4	399, 1635, 1877,
BsaI	2	859, 3189			1987
BsaAI	1	4277	HindII	4	399, 1635, 1877,
BsaBI	1	1978			1987
BsaHI	2	311, 3665	HindIII	1	53
Bsp120I	1	1224	HpaI	1	1877
BspHI	2	2955, 3963	Hsp92I	2	311, 3665
BspMI	1	4756	KpnI	1	5
BsrBRI	1	1978	MluI	2	15, 753
BssSI	3	976, 2408, 3792	NciI	5	27, 28, 2615,
BstXI	1	292			3311, 3662
BstZI	3	1730, 1734, 4626	NcoI	1	86

Table 16. Restriction Enzymes That Cut the pCBG99-Basic Vector Between 1 and 5 Times.

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
NheI	1	21	Sall	1	1985
NotI	1	4626	ScaI	3	1609, 3608, 4691
NruI	2	1205, 1472	SinI	2	3266, 3488
NsiI	1	1468	SmaI	1	28
NspI	1	2239	SrfI	1	28
PaeR7I	1	32	SspI	5	477, 555, 3932,
PflMI	1	138	-		4485, 4600
Ppu10I	1	1464	StyI	3	86, 206, 1301
PshAI	1	2050	VspI	1	3300
PspAI	1	26	XbaI	1	1717
PvuI	2	3498, 4544	XhoI	1	32
PvuII	2	768, 1432	XmaI	1	26
SacI	1	11	XmnI	1	3727

Table 16. Restriction Enzymes That Cut the pCBG99-Basic Vector Between 1 and 5 Times (continued).

Table 17. Restriction Enzymes That Do Not Cut the pCBG99-Basic Vector.

AccIII	Bpu1102I	Eco81I	PinAI	SgrAI
AflII	BsrGI	EcoNI	PmeI	SnaBI
AgeI	BssHII	EcoRI	PmlI	SpeI
AscI	Bst1107I	EcoRV	PpuMI	SphI
AvrII	Bst98I	EheI	Psp5II	SplI
Ball	BstEII	I-PpoI	PstI	Sse8387I
BbeI	Bsu36I	KasI	RsrII	StuI
BbrPI	CspI	NarI	SacII	SwaI
BbuI	Csp45I	NdeI	SfiI	Tth111I
BlpI	Eco72I	PacI	SgfI	XcmI

Table 18.	Restriction	Enzymes	That	Cut the	pCBG99	-Basic	Vector 6	or M	lore
Times.									

AciI	Bst71I	HhaI	MseI	Sau96I
AluI	BstOI	HinfI	MspI	ScrFI
BanI	BstUI	HpaII	MspA1I	SfaNI
BbvI	CfoI	HphI	NaeI	TaqI
BsaOI	Cfr10I	Hsp92II	NdeII	TfiI
BsaJI	DdeI	MaeI	NgoMIV	Tru9I
BsaMI	DpnI	MaeII	NlaIII	XhoII
BsmI	DpnII	MaeIII	NlaIV	
Bsp1286I	Fnu4HI	MboI	PleI	
BsrI	FokI	MboII	RsaI	
BsrSI	HaeIII	MnlI	Sau3AI	

Note: The enzymes listed in bold face type are available from Promega Corporation.

 Promega Corporation
 2800
 Woods
 Hollow Road
 Madison, WI
 53711-5399
 USA

 Toll Free in USA 800-356-9526
 Phone 608-274-4330
 Fax 608-277-2516
 www.promega.com

 Printed in USA.
 Part# TM059

 Revised 8/09
 Page 29

7.F. pCBG99-Control Vector Restriction Sites

The following restriction enzyme tables were constructed using DNASTAR[®] sequence analysis software. Please note that we have not verified this information by restriction digestion with each enzyme listed. The location given specifies the 3'-end of the cut DNA (the base to the left of the cut site). For more information on the cut sites of these enzymes, or if you identify a discrepancy, please contact your local Promega Branch or Distributor. In the U.S., contact Promega Technical Services at 800-356-9526. Vector sequences are also available in the GenBank[®] database (GenBank[®]/EMBL Accession Number AY258596) and online at: www.promega.com/vectors/

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
AatII	1	506	BstZI	3	1922, 1926, 5064
AccB7I	1	330	ClaI	3	2164, 5122, 5226
AccI	2	986, 2424	DraI	5	813, 2130, 3432,
Acc65I	1	1			3451, 4143
AcyI	2	503, 4103	DraII	1	1450
AfIIII	4	15, 945, 1782,	DraIII	2	1198, 4718
		2673	DrdI	2	2781, 4762
Alw26I	3	1051, 3627, 4403	DsaI	1	278
Alw44I	2	2987, 4233	EaeI	5	1247, 1922, 1926,
AlwNI	1	3089			3954, 5064
ApaI	1	1420	EagI	3	1922, 1926, 5064
AspHI	5	11, 369, 2991,	EarI	3	2557, 4361, 4999
-		4152, 4237	EclHKI	1	3566
AvaI	3	26, 32, 1327	Eco47III	2	1311, 2549
AvaII	2	3704, 3926	Eco52I	3	1922, 1926, 5064
AvrII	1	229	EcoICRI	1	9
BamHI	1	2417	FseI	1	1928
BanII	5	11, 33, 1165,	FspI	2	3788, 4961
		1420, 4644	HaeII	5	1313, 2551, 2921,
BbsI	3	645, 1181, 2502			4560, 4568
BbuI	2	2275, 2347	HgaI	5	910, 2784, 3362,
BclI	2	1074, 1592			4092, 4493
BglI	3	182, 3686, 4954	HincII	4	591, 1827, 2069,
BglII	1	36			2425
BsaI	2	1051, 3627	HindII	4	591, 1827, 2069,
BsaAI	1	4715			2425
BsaBI	2	48, 2170	HindIII	1	245
BsaHI	2	503, 4103	HpaI	1	2069
Bsp120I	1	1416	Hsp92I	2	503, 4103
BspHI	2	3393, 4401	KpnI	1	5
BspMI	1	5194	MluI	2	15, 945
BsrBRI	2	48, 2170	NciI	5	27, 28, 3053,
BssSI	3	1168, 2846, 4230			3749, 4100
BstXI	1	484	NcoI	1	278

Table 19. Restriction Enzymes That Cut the pCBG99-Control Vector Between 1 and 5 Times.

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
NheI	1	21	SfiI	1	182
NotI	1	5064	SinI	2	3704, 3926
NruI	2	1397, 1664	SmaI	1	28
NsiI	3	1660, 2273, 2345	SphI	2	2275, 2347
NspI	3	2275, 2347, 2677	SrfI	1	28
PaeR7I	1	32	SspI	5	669, 747, 4370,
PflMI	1	330			4923, 5038
Ppu10I	3	1656, 2269, 2341	StuI	1	228
PshAI	1	2488	StyI	4	229, 278, 398,
PspAI	1	26	-		1493
PvuI	2	3936, 4982	VspI	1	3738
PvuII	2	960, 1624	XbaI	1	1909
SacI	1	11	XhoI	1	32
SalI	1	2423	XmaI	1	26
ScaI	3	1801, 4046, 5129	XmnI	1	4165

Table 19. Restriction Enzymes That Cut the pCBG99-Control Vector Between 1 and 5 Times (continued).

|--|

AccIII	BsrGI	Eco81I	PacI	SgfI
AflII	BssHII	EcoNI	PinAI	SgrAI
AgeI	Bst1107I	EcoRI	PmeI	SnaBI
AscI	Bst98I	EcoRV	PmlI	SpeI
Ball	BstEII	EheI	PpuMI	SplI
BbeI	Bsu36I	I-PpoI	Psp5II	Sse8387I
BbrPI	CspI	KasI	PstI	SwaI
BlpI	Csp45I	NarI	RsrII	Tth111I
Bpu1102I	Eco72I	NdeI	SacII	XcmI

Table 21. Restriction Enzymes That Cut the pCBG99-Control Vector 6 or More Times.

Bst71I	HhaI	MseI	Sau96I
BstOI	HinfI	MspI	ScrFI
BstUI	HpaII	MspA1I	SfaNI
CfoI	HphI	NaeI	TaqI
Cfr10I	Hsp92II	NdeII	Tfil
DdeI	MaeI	NgoMIV	Tru9I
DpnI	MaeII	NlaIII	XhoII
DpnII	MaeIII	NlaIV	
Fnu4HI	MboI	PleI	
FokI	MboII	RsaI	
HaeIII	MnlI	Sau3AI	
	Bst71I BstOI BstUI CfoI Cfr10I DdeI DpnI DpnII Fnu4HI FokI HaeIII	Bst71IHhaIBst0IHinfIBstUIHpaIICfoIHphICfr10IHsp92IIDdeIMaeIDpnIMaeIIIFnu4HIMboIFokIMboIIHaeIIIMnII	Bst711HhaIMselBstOIHinfIMspIBstUIHpaIIMspA1ICfoIHphINaeICfr10IHsp92IINdeIIDdeIMaeINgoMIVDpnIMaeIINlaIIIDpnIIMaeIIINlaIVFnu4HIMboIPleIFokIMboIIRsaIHaeIIIMnIISau3AI

Note: The enzymes listed in bold face type are available from Promega Corporation.

 Promega Corporation
 2800
 Woods
 Hollow Road
 Madison, WI
 53711-5399
 USA

 Toll Free in USA 800-356-9526
 Phone 608-274-4330
 Fax 608-277-2516
 www.promega.com

 Printed in USA.
 Part# TM059

 Revised 8/09
 Page 31

7.G. References

- Buchman, A.R. and Berg, P. (1988) Comparison of intron-dependent and intronindependent gene expression. *Mol. Cell. Biol.* 8, 4395–405.
- Loeffler, J.P. et al. (1990) Lipopolyamine-mediated transfection allows gene expression studies in primary neuronal cells. J. Neurochem. 54, 1812–15.
- Graham, F.L. and van der Eb, A.J. (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. *Virology* 52, 456–67.
- Wigler, M. et al. (1977) Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell 11, 223–32.

7.H. Related Products

For a complete listing of our Reporter Vectors please visit: www.promega.com

Luciferase Assay System

Product	Size	Cat.#
Chroma-Glo™ Luciferase Assay System	10 ml	E4910
	100 ml	E4920
	10 × 100 ml	E4950

Lysis Buffer

Product	Size	Cat.#
Glo Lysis Buffer, 1X	100 ml	E2661

Plasmid DNA Purification System

Product	Size	Cat.#
PureYield™ Plasmid Midiprep System	25 preps	A2492
	100 preps	A2495

(a)U.S. Pat. Nos. 6,387,675 and 6,552,179 and Australian Pat. No. 698424 have been issued to Promega Corporation for mutants of beetle luciferases. Other patents are pending.

^(b)For research use only. This product and/or its use is subject to one or more of the following Promega patents: U.S. Pat. Appln. Ser. Nos. 09/645,706, 10/943,508, 10/664,341, PCT Pat. Appln. Ser. No. PCT/US03/28939, PCT/US2005/033218, U.S. Pat. Nos. 6,387,675 and 6,552,179, Australian Pat. No. 698424 and various corresponding patent applications and issued patents. The terms of the limited license conveyed with the purchase of this product are as follows: Researchers may use this product in their research and they may transfer derivatives to others for research use provided that at the time of transfer a copy of this label license is given to the recipients and the recipients agree to be bound by the terms and conditions of this label license. In addition, researchers must do one of the following: (1) use luminescent assay reagents purchased from Promega Corporation for all determinations of luminescence activity resulting from the research use of this product and its derivatives; or (2) contact Promega to obtain a license for the use of the product and its derivatives in conjunction with luminescent assay reagents not purchased from Promega. No reach-through payments shall be owed to Promega relating to an organization's commercialization of products that are the discoveries resulting from the research use of this product or its derivatives, provided that such products of the organization do not fall within the scope of the valid claims of any issued patents assigned or licensed to Promega, or that such commercialization would not be a violation of the terms of this label license. No other use of this product or its derivatives is authorized without the express written consent of Promega including, without limitation, Commercial Use. Commercial Use means any and all uses of this product and derivatives by a party for monetary or other consideration and may include but is not limited to use in: (1) product manufacture; and (2) to provide a service, information or data; and/or resale of the product or its derivatives, whether or not such product or derivatives are resold for use in research. With respect to such Commercial Use, or any diagnostic, therapeutic or prophylactic uses, please contact Promega for supply and licensing information. If the purchaser is not willing to accept the conditions of this limited use statement, Promega is willing to accept the return of the unopened product and provide the purchaser with a full refund. However, in the event the product is opened, then the purchaser agrees to be bound by the conditions of this limited use statement.

^(c)The method of recombinant expression of *Coleoptera* luciferase is covered by U.S. Pat. Nos. 5,583,024, 5,674,713 and 5,700,673. A license (from Promega for research reagent products and from The Regents of the University of California for all other fields) is needed for any commercial sale of nucleic acid contained within or derived from this product.

^(d)Certain applications of this product may require licenses from others.

(e)U.S. Pat. Nos. 5,283,179, 5,641,641, 5,650,289 and 5,814,471, Australian Pat. No. 649289, European Pat. No. 0 553 234 and Japanese Pat. No. 3171595 have been issued to Promega Corporation for a beetle luciferase assay method, which affords greater light output with improved kinetics as compared to the conventional assay.

© 2003, 2005, 2007, 2009 Promega Corporation. All Rights Reserved.

Chroma-Glo, Chroma-Luc and PureYield are trademarks of Promega Corporation.

DNASTAR is a registered trademark of DNASTAR, Inc. Fluorolog is a registered trademark of HORIBA Jobin Yvon, Inc. GenBank is a registered trademark of the U.S. Dept. of Health and Human Services.

Products may be covered by pending or issued patents or may have certain limitations. Please visit our Web site for more information.

All prices and specifications are subject to change without prior notice.

Product claims are subject to change. Please contact Promega Technical Services or access the Promega online catalog for the most up-to-date information on Promega products.

 Promega Corporation
 2800
 Woods
 Hollow Road
 Madison, WI
 53711-5399
 USA

 Toll Free in USA 800-356-9526
 Phone 608-274-4330
 Fax 608-277-2516
 www.promega.com

 Printed in USA.
 Part# TM059

 Revised 8/09
 Page 33

