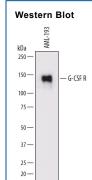


# **Human G-CSF R/CD114 Antibody**


Antigen Affinity-purified Polyclonal Goat IgG Catalog Number: AF-381-PB

| DESCRIPTION        |                                                                                                                                                                                |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Species Reactivity | Human                                                                                                                                                                          |  |
| Specificity        | Detects human G-CSF R/CD114 in direct ELISAs and Western blots. In direct ELISAs, less than 1% cross-reactivity with recombinant human (rh) G-CSF and rhGM-CSF Ra is observed. |  |
| Source             | Polyclonal Goat IgG                                                                                                                                                            |  |
| Purification       | Antigen Affinity-purified                                                                                                                                                      |  |
| Immunogen          | Mouse myeloma cell line NS0-derived recombinant human G-CSF R/CD114 (Catalog # 381-GR) Glu25-Pro621 Accession # Q99062                                                         |  |
| Endotoxin Level    | <0.10 EU per 1 µg of the antibody by the LAL method.                                                                                                                           |  |
| Formulation        | Lyophilized from a 0.2 µm filtered solution in PBS with Trehalose. See Certificate of Analysis for details.                                                                    |  |

### **APPLICATIONS**

Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website

|              | Recommended Concentration | Sample    |
|--------------|---------------------------|-----------|
| Western Blot | 0.5 μg/mL                 | See Below |



Detection of Human G-CSF R/CD114 by Western Blot. Western blot shows lysates of AML-193 human acute monocytic leukemia cell line. PVDF membrane was probed with 0.5 µg/mL of Goat Anti-Human G-CSF R/CD114 Antigen Affinity-purified Polyclonal Antibody (Catalog # AF-381-PB) followed by HRP-conjugated Anti-Goat IgG Secondary Antibody (Catalog # HAF017). A specific band was detected for G-CSF R/CD114 at approximately 145 kDa (as indicated). This experiment was conducted under reducing conditions and using Immunoblot Buffer Group 1.

# PREPARATION AND STORAGE

| Reconstitution                                                                                                                   | Reconstitute at 0.2 mg/mL in sterile PBS.                           |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|--|
| Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below. |                                                                     |  |  |
| Stability & Storage                                                                                                              | Use a manual defrost freezer and avoid repeated freeze-thaw cycles. |  |  |

- Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
  - 12 months from date of receipt, -20 to -70 °C as supplied. 1 month, 2 to 8 °C under sterile conditions after reconstitution.
  - 6 months, -20 to -70 °C under sterile conditions after reconstitution.

# BACKGROUND

Granulocyte Colony Stimulating Factor (G-CSF) is a pleiotropic cytokine best known for its specific effects on the proliferation, differentiation, and activation of hematopoietic cells of the neutrophilic granulocyte lineage. G-CSF plays an important role in defense against infection, in inflammation and repair, and in the maintenance of steady state hematopoiesis. Recombinant human G-CSF has been approved for the amelioration of chemotherapy induced neutropenia as well as for severe chronic neutropenia following marrow transplant.

Cell activation by G-CSF is mediated by a type I membrane protein belonging to the cytokine receptor superfamily. Human G-CSF R is 863 amino acids (aa) in length, with a 604 aa extracellular domain, a 26 aa transmembrane domain, and a 183 aa cytoplasmic domain that include a 23 amino acid signal sequence. As a result of alternative splicing, at least four isoforms of G-CSF R that differ in their C-terminal region exist. Isoform 2 lacks the transmembrane region and may represent a soluble form of the receptor; however the existence of soluble G-CSF R in human serum has not been reported (1). Mutations have been found in the gene encoding G-CSF R in some patients with severe congenital neutropenia. These mutations typically led to a truncation in the cytoplasmic domain of the G-CSF R leading to maturation arrest of neutrophil precursors in the bone marrow and neutropenia in peripheral blood (2). Human and mouse G-CSF R have a homology of 62.5%.

G-CSF R is expressed in mature neutrophils, neutrophilic precursors, myeloid leukemia cells, and placenta. Binding of G-CSF to its receptor induces dimerization or oligomerization of the receptor activating cytoplasmic tyrosine kinases. Signal transduction from pathways that involve Janus tyrosine kinases/signal transducer and activator of transcription proteins (Jak1, Jak2, and Tyk2/STAT3, STAT3, and STATG), src-related protein tyrosine kinases (Lyn and Syk), Ras/MAP kinase, and phosphatidylinositol have been reported to be activated upon G-CSF stimulation (1).

# References:

- Nicola, N.A., in Cytokine Reference, (2001) Oppenhiem, J.J. and M. Feldmann, eds. Academic Press p. 1935.
- 2. Mitsui, T. et al. (2003) Blood. 101:2990.

