

Human LIF Rα Antibody

Antigen Affinity-purified Polyclonal Goat IgG Catalog Number: AF-249-NA

DESCRIPTION			
Species Reactivity	Human		
Specificity	Detects human LIF $R\alpha$ in direct ELISAs and Western blots. In direct ELISAs, approximately 7% cross-reactivity with recombinant mouse LIF $R\alpha$ is observed.		
Source	Polyclonal Goat IgG		
Purification	Antigen Affinity-purified		
Immunogen	S. frugiperda insect ovarian cell line Sf 21-derived recombinant human LIF $R\alpha$ Gln45-Ser833 Accession # P42702		
Endotoxin Level	<0.10 EU per 1 µg of the antibody by the LAL method.		
Formulation	Lyophilized from a 0.2 µm filtered solution in PBS with Trehalose. See Certificate of Analysis for details.		

APPLICATIONS

Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website.

	Recommended Concentration	Sample	
Western Blot	0.1 μg/mL	Recombinant Human LIF Rα (Catalog # 249-LR/CF)	
Neutralization	Measured by its ability to neutralize LIF-induced proliferation in the TF-1 human erythroleukemic cell line [Kitamura, T. et al. (1989) J. Cell Physiol. 140 :323]. The Neutralization Dose (ND ₅₀) is typically 6-36 µg/mL in the presence of 0.3 ng/mL Recombinant Human LIF.		

DATA

Cell Proliferation Induced by LIF and Neutralization by Human LIF Rα Antibody. Recombinant Human LIF stimulates proliferation in the TF-1 human ervthroleukemic cell line in a dose-dependent manner (orange line). Proliferation elicited by 0.3 ng/mL Recombinant Human LIF is neutralized (green line) by increasing concentrations of Goat Anti-Human LIF Ra Antigen Affinity-purified Polyclonal Antibody (Catalog # AF-249-NA). The ND₅₀ is typically 6-36 µg/mL.

PREPARATION AND STORAGE

 Reconstitution
 Reconstitute at 0.2 mg/mL in sterile PBS.

 Shipping
 The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage

Use a manual defrost freezer and avoid repeated freeze-thaw cycles.

- 12 months from date of receipt, -20 to -70 °C as supplied.
- 1 month, 2 to 8 °C under sterile conditions after reconstitution.
- 6 months, -20 to -70 °C under sterile conditions after reconstitution.

BACKGROUND

The activities of the pleiotropic cytokine LIF are mediated through a high-affinity heterodimeric receptor complex consisting of two membrane glycoproteins: an α subunit (LIF R α , also known as LIF R β and CD118) that binds LIF with low affinity and the 130 kDa (gp130) subunit that does not bind LIF by itself, but is required for high-affinity binding of LIF by the complex. The gp130 subunit was first described as the signal transducing subunit of the high-affinity IL-6 receptor complex. Besides LIF, the high-affinity heterodimeric LIF receptor complex has been shown to mediate the activities of oncostatin M (OSM), cardiotrophin-1 and ciliary neurotrophic factor (CNTF).

Human LIF $R\alpha$ cDNA encodes a 1097 amino acid (aa) residue precursor type I membrane protein with a 44 aa residue signal peptide, a 789 aa residue extracellular domain, a 26 aa residue transmembrane domain, and a 238 aa residue cytoplasmic domain. LIF $R\alpha$ is a member of the cytokine receptor family and has extensive homology to gp130. The extracellular domain of LIF $R\alpha$ has two cytokine receptor domains and three fibronectin type III repeats. In mouse, mRNAs encoding a soluble LIF $R\alpha$ and lacking transmembrane and intracellular domains, have been isolated. Soluble LIF $R\alpha$ has been shown to bind LIF and has LIF antagonistic activity.

References:

- 1. Bazan, J.F. (1990) Proc. Natl. Acad. Sci. USA 87:6934.
- 2. Gearing, D.P. (1994) Guidebook to Cytokines and Their Receptors, Academic Press, p130.
- 3. Pennica D. et al. (1995) J. Biol. Chem. 270:10915.

