Recombinant Rabbit TNF-α Catalog Number: 5670-TG | DESCRIPTION | | |---------------------------------|--| | Source | E. coli-derived Leu79-Leu234, with an N-terminal Met Accession # NP_001075732 | | N-terminal Sequence
Analysis | Met - Leu79 | | Predicted Molecular
Mass | 17.4 kDa | | SPECIFICATIONS | | | SDS-PAGE | 19 kDa, reducing conditions | | Activity | Measured in a cytotoxicity assay using L-929 mouse fibroblast cells in the presence of the metabolic inhibitor actinomycin D. Matthews, N. and M.L. Neale (1987) in Lymphokines and Interferons, A Practical Approach. Clemens, M.J. <i>et al.</i> (eds): IRL Press. 221. The ED ₅₀ for this effect is typically 0.01-0.04 ng/mL. | | Endotoxin Level | <0.10 EU per 1 µg of the protein by the LAL method. | | Purity | >95%, by SDS-PAGE under reducing conditions and visualized by silver stain. | | Formulation | Lyophilized from a 0.2 µm filtered solution in PBS with BSA as a carrier protein. See Certificate of Analysis for details. | | PREPARATION AND ST | TORAGE | | Reconstitution | Reconstitute at 100 µg/mL in PBS containing at least 0.1% human or bovine serum albumin. | | Shipping | The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below. | | Stability & Storage | Use a manual defrost freezer and avoid repeated freeze-thaw cycles. 12 months from date of receipt, -20 to -70 °C as supplied. 1 month, 2 to 8 °C under sterile conditions after reconstitution. 3 months, -20 to -70 °C under sterile conditions after reconstitution. | ## **BACKGROUND** Tumor necrosis factor alpha (TNF- α , also known as cachectin and TNFSF1A), is the prototypic ligand of the TNF superfamily. It is a pleiotropic molecule that plays a central role in inflammation, apoptosis, and immune system development. TNF- α is produced by a wide variety of immune and epithelial cell types (1, 2). Rabbit TNF- α precursor is a type II transmembrane protein that consists of a 35 amino acid (aa) region, a 21 aa transmembrane segment, and a 179 aa extracellular domain (ECD) (3). This 26 kDa protein is assembled intracellularly to form a noncovalently linked homotrimer (4). Cleavage of membrane bound TNF- α by TACE/ADAM17 releases a 55 kDa soluble trimeric form of TNF- α (5, 6). Within the cleaved ECD, rabbit TNF- α shares 76% - 83% with bovine, canine, cotton rat, equine, feline, human, mouse, porcine, rat, and rhesus TNF- α Ligation of the membrane bound trimeric complex induces reverse signaling that promotes lymphocyte costimulation but diminishes monocyte responsiveness (7). TNF- α trimers bind a ubiquitous TNF RI as well as a hematopoietic cell-restricted TNF RII, both of which are also expressed as preformed homotrimers (1, 8). TNF- α regulates lymphoid tissue development through control of apoptosis (2). It also promotes inflammatory responses by inducing the activation of vascular endothelial cells and macrophages (2). TNF- α is a key cytokine in several inflammatory disorders (9). It contributes to the development of type 2 diabetes through its effects on insulin resistance and fatty acid metabolism (10, 11). ## References: - 1. Idriss, H.T. and J.H. Naismith (2000) Microsc. Res. Tech. 50:184. - 2. Hehlgans, T. and K. Pfeffer (2005) Immunology 115:1. - 3. Ito, H. et al. (1986) DNA 5:157. - 4. Tang, P. et al. (1996) Biochemistry 35:8216. - 5. Black, R.A. et al. (1997) Nature 385:729. - 6. Moss, M.L. et al. (1997) Nature **385**:733. - 7. Eissner G. et al., 2004, Cytokine Growth Factor Rev. 15:353. - 8. Chan, F. et al. (2000) Science 288:2351. - 9. Clark, I.A. (2007) Cytokine Growth Factor Rev. 18:335. - 10. Romanatto, T. et al. (2007) Peptides 28:1050. - 11. Hector, J. et al. (2007) Horm. Metab. Res. 39:250.