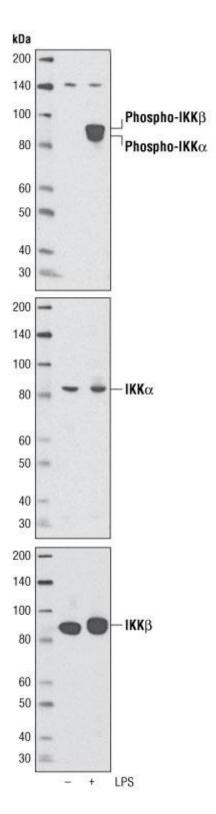
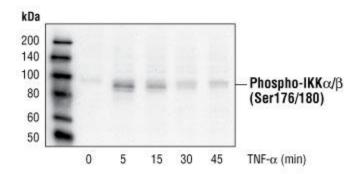
Kit Includes	Quantity	Applications	Reactivity	MW (kDa)	Isotype
Phospho-IKKα (Ser176)/IKKβ (Ser177) (C84E11) Rabbit mAb #2078	40 µl	W	H M (R) (Mk) (B)	85 (IKKalpha), 87 (IKKbeta)	Rabbit IgG
Phospho-IKKα/β (Ser176/180) (16A6) Rabbit mAb #2697	40 μΙ	W IHC-P IHC-F	H M R Mk (B)	85 IKK-alpha 87 IKK-beta	Rabbit IgG
Phospho-IKKα/β (Ser176/180) Antibody II #2694	40 μΙ	W	H M R Mk	85 IKK-alpha 87 IKK-beta	Rabbit
Anti-rabbit IgG, HRP-linked Antibody #7074	100 µl				Goat

Applications Key: W=Western Blotting IHC-P=Immunohistochemistry (Paraffin) IHC-F=Immunohistochemistry (Frozen)

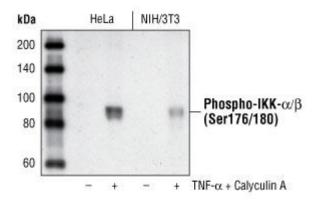

Reactivity Key: H=Human M=Mouse R=Rat Mk=Monkey B=Bovine

Species enclosed in parentheses are predicted to react based on 100% sequence homology.

Specificity / Sensitivity


Phospho-IKK α/β (Ser176/180) Antibody, Phospho-IKK α/β (Ser176/180) Antibody II, and Phospho-IKK α/β (Ser176/180) (16A6) Rabbit mAb detect IKK α only when phosphorylated at Ser176/180 and IKK β only when phosphorylated at Ser177/181.

Western Blotting


Western blot analysis of extracts from differentiated THP-1 cells, untreated or LPS-treated for 15 minutes, using Phospho-IKK α (Ser176)/IKK β (Ser177) (C84E11) Rabbit mAb #2078 (upper), IKK α Antibody #2682 (middle) and IKK β (2C8) Rabbit mAb #2370 (lower).

Western Blotting

Western blot analysis of extracts from HeLa cells, treated with TNF- α (20ng/ml) for the indicated times, using Phospho-IKK α / β (Ser176/180) Antibody II #2694.

Western Blotting

Western blot analysis of extracts from HeLa and NIH/3T3 cells, treated with TNF- α (20 ng/ml) and calyculin A #9902 (50 nM), using Phospho-IKK α / β (Ser176/180) (16A6) Rabbit mAb #2697.

Description

The Phospho-IKKalpha/beta (Ser176/180) Antibody Sampler Kit contains reagents to examine protein levels of IKKalpha when phosphorylated at Ser176/180 and IKKbeta when phosphorylated at Ser177/181. The kit contains primary and secondary antibodies to perform four Western blots with each antibody.

Source / Purification

Polyclonal antibodies #2687 and #2694 are produced by immunizing rabbits with a synthetic phosphopeptide corresponding to residues surrounding Ser176/180 of human IKK α and Ser177/181 of IKK β , respectively, and are purified by protein A and peptide affinity chromatography. Monoclonal antibody #2697 is produced by immunizing rabbits with a synthetic phosphopeptide corresponding to residues surrounding Ser176/180 of human IKK α .

Background

The NF- κ B/Rel transcription factors are present in the cytosol in an inactive state, complexed with the inhibitory I κ B proteins (1-3). Most agents that activate NF- κ B do so through a common pathway based on phosphorylation-induced, proteasome-mediated degradation of I κ B (3-7). The key regulatory step in this pathway involves activation of a high molecular weight I κ B kinase (IKK) complex whose catalysis is generally carried out by three tightly associated IKK subunits. IKK α and IKK β serve as the catalytic subunits of the kinase and IKK γ serves as the regulatory subunit (8,9). Activation of IKK depends upon phosphorylation at Ser177 and Ser181 in the activation loop of IKK β (Ser176 and Ser180 in IKK α), which causes conformational changes, resulting in kinase activation (10-13).

- 1. Baeuerle, P.A. and Baltimore, D. (1988) Science 242, 540-6.
- 2. Beg, A.A. and Baldwin, A.S. (1993) Genes Dev 7, 2064-70.
- 3. Finco, T.S. et al. (1994) Proc Natl Acad Sci USA 91, 11884-8.
- 4. Brown, K. et al. (1995) Science 267, 1485-8.
- 5. Brockman, J.A. et al. (1995) Mol Cell Biol 15, 2809-18.
- 6. Traenckner, E.B. et al. (1995) EMBO J 14, 2876-83.
- 7. Chen, Z.J. et al. (1996) Cell 84, 853-62.
- 8. Zandi, E. et al. (1997) Cell 91, 243-52.
- 9. Karin, M. (1999) Oncogene 18, 6867-74.
- 10. DiDonato, J.A. et al. (1997) Nature 388, 548-54.
- 11. Mercurio, F. et al. (1997) Science 278, 860-6.
- 12. Johnson, L.N. et al. (1996) Cell 85, 149-58.
- 13. <u>Delhase, M. et al. (1999)</u> *Science* 284, 309-13.