Applications	Reactivity	Sensitivity	MW (kDa)	Source
W	M R	Endogenous	12	Rabbit

Applications Key: W=Western Blotting

Reactivity Key: M=Mouse R=Rat

Species cross-reactivity is determined by western blot. Species enclosed in parentheses are predicted to react based on 100% sequence homology.

Protocols

2298:Western Blotting

Western Immunoblotting Protocol (Primary Ab Incubation In BSA)

For Western blots, incubate membrane with diluted antibody in 5% w/v BSA, 1X TBS, 0.1% Tween-20 at 4 $^{\circ}$ C with gentle shaking, overnight.

Products available from Cell Signaling Technology are linked by their respective catalog numbers.

A. Solutions and Reagents

NOTE: Prepare solutions with Milli-Q or equivalently purified water.

- 1. 1X Phosphate Buffered Saline (PBS).
- 2. **1X SDS Sample Buffer:** (#7722, #7723) 62.5 mM Tris-HCl (pH 6.8 at 25 °C), 2% w/v SDS, 10% glycerol, 50 mM DTT, 0.01% w/v bromophenol blue or phenol red.
- 3. **Transfer Buffer:** 25 mM Tris base, 0.2 M glycine, 20% methanol (pH 8.5).
- 4. **10X Tris Buffered Saline (TBS):** (#9997) To prepare 1 liter of 10X TBS: 24.2 g Tris base, 80 g NaCl; adjust pH to 7.6 with HCl (use at 1X).
- 5. **Nonfat Dry Milk:** (#9999) (weight to volume [w/v]).
- 6. **Blocking Buffer:** 1X TBS, 0.1% Tween-20 with 5% w/v nonfat dry milk; for 150 ml, add 15 ml 10X TBS to 135 ml water, mix. Add 7.5 g nonfat dry milk and mix well. While stirring, add 0.15 ml Tween-20 (100%).
- 7. **Wash Buffer:** 1X TBS, 0.1% Tween-20 (TBS/T).
- 8. Bovine Serum Albumin (BSA): (#9998).
- 9. **Primary Antibody Dilution Buffer:** 1X TBS, 0.1% Tween-20 with 5% BSA; for 20 ml, add 2 ml 10X TBS to 18 ml water, mix. Add 1.0 g BSA and mix well. While stirring, add 20 µl Tween-20 (100%).
- 10. Phototope®-HRP Western Blot Detection System: (#7071 anti-rabbit) or (#7072 anti-mouse) Includes biotinylated protein ladder, secondary (#7074 anti-rabbit) or (#7076 anti-mouse) antibody conjugated to horseradish peroxidase (HRP), anti-biotin antibody conjugated to HRP, LumiGLO® chemiluminescent reagent and peroxide.
- 11. Prestained Protein Marker, Broad Range (Premixed Format): (#7720).
- 12. Biotinylated Protein Ladder Detection Pack: (#7727).
- Blotting Membrane: This protocol has been optimized for nitrocellulose membranes, which CST recommends. PVDF
 membranes may also be used.

B. Protein Blotting

A general protocol for sample preparation is described below.

- 1. Treat cells by adding fresh media containing regulator for desired time.
- 2. Aspirate media from cultures; wash cells with 1X PBS; aspirate.
- 3. Lyse cells by adding 1X SDS sample buffer (100 μl per well of 6-well plate or 500 μl per plate of 10 cm diameter plate). Immediately scrape the cells off the plate and transfer the extract to a microcentrifuge tube. Keep on ice.
- 4. Sonicate for 10–15 seconds for complete cell lysis and to shear DNA (to reduce sample viscosity).
- 5. Heat a 20 μ l sample to 95–100 $^{\circ}$ C for 5 minutes; cool on ice.
- 6. Microcentrifuge for 5 minutes.
- Load 20 μl onto SDS-PAGE gel (10 cm x 10 cm). NOTE: CST recommends loading prestained molecular weight
 markers (#7720, 10 μl/lane) to verify electrotransfer and biotinylated protein ladder (#7727, 10 μl/lane) to determine
 molecular weights.
- 8. Electrotransfer to nitrocellulose or PVDF membrane.

C. Membrane Blocking and Antibody Incubations

NOTE: Volumes are for 10 cm x 10 cm (100 cm²) of membrane; for different sized membranes, adjust volumes accordingly.

- 1. (Optional) After transfer, wash nitrocellulose membrane with 25 ml TBS for 5 minutes at room temperature.
- 2. Incubate membrane in 25 ml of blocking buffer for 1 hour at room temperature.
- 3. Wash three times for 5 minutes each with 15 ml of TBS/T.
- 4. Incubate membrane and primary antibody (at the appropriate dilution) in 10 ml primary antibody dilution buffer with gentle agitation <u>overnight</u> at 4 °C.
- 5. Wash three times for 5 minutes each with 15 ml of TBS/T.

I. For Unconjugated Primary Antibodies

- Incubate membrane with appropriate HRP-conjugated secondary antibody (1:2000) and HRP-conjugated anti-biotin
 antibody (1:1000) to detect biotinylated protein markers in 10 ml of blocking buffer with gentle agitation for 1 hour at
 room temperature.
- 2. Wash three times for 5 minutes each with 15 ml of TBS/T.

II. For HRP Conjugated Primary Antibodies

Skip to Detection of Proteins (Step D).

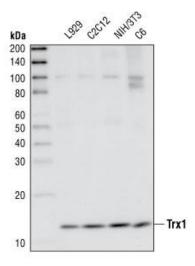
III. For Biotinylated Primary Antibodies

- Incubate membrane with HRP-Streptavidin (at the appropriate dilution) in milk for one hour with gentle agitation at room temperature.
- 2. Wash three times for 5 minutes each with 15 ml of TBS/T.

D. Detection of Proteins

Incubate membrane with 10 ml LumiGLO[®] (0.5 ml 20X LumiGLO[®], 0.5 ml 20X Peroxide and 9.0 ml Milli-Q water) with gentle agitation for 1 minute at room temperature. NOTE: LumiGLO[®] substrate can be further diluted if signal response is too fast.

2. Drain membrane of excess developing solution (do not let dry), wrap in plastic wrap and expose to x-ray film. An initial 10-second exposure should indicate the proper exposure time. **NOTE:** Due to the kinetics of the detection reaction, signal is most intense immediately following LumiGLO® incubation and declines over the following 2 hours.


Specificity / Sensitivity

Thioredoxin 1 Antibody (Mouse/Rat Preferred) detects endogenous levels of total mouse and rat thioredoxin 1 protein.

Source / Purification

Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to the sequence of mouse thioredoxin 1. Antibodies are purified by protein A and peptide affinity chromatography.

Western Blotting

Western blot analysis of extracts from various cell lines, using Thioredoxin 1 Antibody (Mouse/Rat Preferred).

Background

Thioredoxin is a small redox protein found in many eukaryotes and prokaryotes. A pair of cysteines within a highly conserved, active site sequence can be oxidized to form a disulfide bond which is then reduced by thioredoxin reductase (1). Multiple forms of thioredoxin have been identified, including cytosolic thioredoxin 1 (Trx1) and mitochondrial thioredoxin 2 (Trx2). Thioredoxin participates in many cellular processes including redox signaling, response to oxidative stress and protein reduction (1). A potential role of thioredoxin in human disorders such as cancer, aging and heart disease is currently under investigation (2). Thioredoxin can play a key role in cancer progression, as it acts as a negative regulator of the proapoptotic kinase ASK1 (3) Changes in thioredoxin expression have been associated with meningococcal septic shock and acute lung injury (4,5).

- 1. Watson, W.H. et al. (2004) Toxicol. Sci. 78, 3-14.
- 2. Burke-Gaffney, A. et al. (2005) Trends Pharmacol. Sci. 26, 398-404.
- 3. Saitoh, M. et al. (1998) EMBO J. 17, 2596-2606.
- 4. Callister, M.E. et al. (2007) Intensive Care Med. 33, 364-367.
- 5. Callister, M.E. et al. (2006) *Thorax* 61, 521-527.