Applications	Reactivity	Sensitivity	MW (kDa)	Source
WF	H M R Mk	Endogenous	58	Rabbit

Applications Key: W=Western Blotting F=Flow Cytometry

Reactivity Key: H=Human M=Mouse R=Rat Mk=Monkey

Species cross-reactivity is determined by western blot. Species enclosed in parentheses are predicted to react based on 100% sequence homology.

Protocols

2289:

Flow Cytometry Protocol

A. Solutions and Reagents

NOTE: Prepare solutions with purified water.

1. **1X Phosphate Buffered Saline (PBS):** Dissolve 8 g NaCl, 0.2 g KCl, 1.44 g Na₂HPO₄ and 0.24 g KH₂PO₄in 800 ml

dH₂O. Adjust the pH to 7.4 with HCl and the volume to 1 L. Store at room temperature.

- 2. Formaldehyde (methanol free).
- 3. 100% Methanol
- 4. Incubation Buffer: Dissolve 0.5 g bovine serum albumin (BSA) in 100 ml 1X PBS. Store at 4 °C.

B. Fixation

- 1. Collect cells by centrifugation and aspirate supernatant.
- 2. Resuspend cells briefly in 0.5–1 ml PBS. Add formaldehyde to a final concentration of 2–4% formaldehyde.
- 3. Fix for 10 min at 37 ℃.
- 4. Chill tubes on ice for 1 min.
- 5. For extracellular staining with antibodies that do not require permeabilization, proceed to Section D, Step 1 or store cells in PBS with 0.1% sodium azide at 4 °C; for intracellular staining, proceed to permeabilization (Section C, Step 1).

C. Permeabilization

- Permeabilize cells by adding ice-cold 100% methanol slowly to pre-chilled cells, while gently vortexing, to a final concentration of 90% methanol. Alternatively, to remove fix prior to permeabilization, pellet cells by centrifugation and resuspend in 90% methanol.
- 2. Incubate 30 min on ice.
- 3. Proceed with immunostaining (Section D, Step 1) or store cells at -20 °C in 90% methanol.

D. Immunostaining

NOTE: Account for isotype matched controls for monoclonal antibodies or species matched IgG for polyclonal antibodies. Count cells using a hemocytometer or alternative method.

- 1. Aliquot $0.5-1 \times 10^6$ cells into each assay tube (by volume).
- 2. Add 2–3 ml Incubation Buffer to each tube and rinse by centrifugation. Repeat.
- 3. Resuspend cells in 100 µl Incubation Buffer per assay tube.
- 4. Block in Incubation Buffer for 10 min at room temperature.

- 5. Add the unconjugated, biotinylated, or fluorochrome-conjugated primary antibody at the appropriate dilution to the assay tubes (see individual antibody datasheet for the appropriate dilution).
- 6. Incubate for 1 hr at room temperature.
- 7. Rinse as before in Incubation Buffer by centrifugation.
- If using a fluorochrome-conjugated primary antibody, resuspend cells in 0.5 ml PBS and analyze on flow cytometer; for unconjugated or biotinylated primary antibodies, proceed to immunostaining (Section D, Step 9).
- Resuspend cells in fluorochrome-conjugated secondary antibody or fluorochrome-conjugated avidin, diluted in Incubation Buffer at the recommended dilution.
- 10. Incubate for 30 min at room temperature.
- 11. Rinse as before in Incubation Buffer by centrifugation.
- Resuspend cells in 0.5 ml PBS and analyze on flow cytometer; alternatively, for DNA staining, proceed to optional DNA stain (Section E, Step 1).

E. Optional DNA Stain

- 1. Resuspend cells in 0.5 ml of DNA dye (e.g. Propidium Iodide (PI)/RNase Staining Solution #4087).
- 2. Incubate for at least 5 min at room temperature.
- 3. Analyze cells in DNA stain on flow cytometer.

Western Immunoblotting Protocol (Primary Ab Incubation In BSA)

For Western blots, incubate membrane with diluted antibody in 5% w/v BSA, 1X TBS, 0.1% Tween-20 at 4 $^{\circ}{\rm C}$

with gentle shaking, overnight.

Products available from Cell Signaling Technology are linked by their respective catalog numbers.

A. Solutions and Reagents

NOTE: Prepare solutions with Milli-Q or equivalently purified water.

- 1. 1X Phosphate Buffered Saline (PBS).
- 1X SDS Sample Buffer: (#7722, #7723) 62.5 mM Tris-HCl (pH 6.8 at 25 °C), 2% w/v SDS, 10% glycerol, 50 mM DTT, 0.01% w/v bromophenol blue or phenol red.
- 3. Transfer Buffer: 25 mM Tris base, 0.2 M glycine, 20% methanol (pH 8.5).
- 10X Tris Buffered Saline (TBS): (#9997) To prepare 1 liter of 10X TBS: 24.2 g Tris base, 80 g NaCl; adjust pH to 7.6 with HCl (use at 1X).
- 5. Nonfat Dry Milk: (#9999) (weight to volume [w/v]).
- Blocking Buffer: 1X TBS, 0.1% Tween-20 with 5% w/v nonfat dry milk; for 150 ml, add 15 ml 10X TBS to 135 ml water, mix. Add 7.5 g nonfat dry milk and mix well. While stirring, add 0.15 ml Tween-20 (100%).
- 7. Wash Buffer: 1X TBS, 0.1% Tween-20 (TBS/T).
- 8. Bovine Serum Albumin (BSA): (#9998).
- Primary Antibody Dilution Buffer: 1X TBS, 0.1% Tween-20 with 5% BSA; for 20 ml, add 2 ml 10X TBS to 18 ml water, mix. Add 1.0 g BSA and mix well. While stirring, add 20 μl Tween-20 (100%).

- Phototope[®]-HRP Western Blot Detection System: (<u>#7071 anti-rabbit</u>) or (<u>#7072 anti-mouse</u>) Includes biotinylated protein ladder, secondary (<u>#7074 anti-rabbit</u>) or (<u>#7076 anti-mouse</u>) antibody conjugated to horseradish peroxidase (HRP), anti-biotin antibody conjugated to HRP, LumiGLO[®] chemiluminescent reagent and peroxide.
- 11. Prestained Protein Marker, Broad Range (Premixed Format): (#7720).
- 12. Biotinylated Protein Ladder Detection Pack: (#7727).
- Blotting Membrane: This protocol has been optimized for nitrocellulose membranes, which CST recommends. PVDF membranes may also be used.

B. Protein Blotting

A general protocol for sample preparation is described below.

- 1. Treat cells by adding fresh media containing regulator for desired time.
- 2. Aspirate media from cultures; wash cells with 1X PBS; aspirate.
- Lyse cells by adding 1X SDS sample buffer (100 µl per well of 6-well plate or 500 µl per plate of 10 cm diameter plate).
 Immediately scrape the cells off the plate and transfer the extract to a microcentrifuge tube. Keep on ice.
- 4. Sonicate for 10–15 seconds for complete cell lysis and to shear DNA (to reduce sample viscosity).
- 5. Heat a 20 μl sample to 95–100 ℃ for 5 minutes; cool on ice.
- 6. Microcentrifuge for 5 minutes.
- Load 20 μl onto SDS-PAGE gel (10 cm x 10 cm). NOTE: CST recommends loading prestained molecular weight markers (<u>#7720</u>, 10 μl/lane) to verify electrotransfer and biotinylated protein ladder (<u>#7727</u>, 10 μl/lane) to determine molecular weights.
- 8. Electrotransfer to nitrocellulose or PVDF membrane.

C. Membrane Blocking and Antibody Incubations

NOTE: Volumes are for $10 \text{ cm x} 10 \text{ cm} (100 \text{ cm}^2)$ of membrane; for different sized membranes, adjust volumes accordingly.

- 1. (Optional) After transfer, wash nitrocellulose membrane with 25 ml TBS for 5 minutes at room temperature.
- 2. Incubate membrane in 25 ml of blocking buffer for 1 hour at room temperature.
- 3. Wash three times for 5 minutes each with 15 ml of TBS/T.
- 4. Incubate membrane and primary antibody (at the appropriate dilution) in 10 ml primary antibody dilution buffer with gentle agitation <u>overnight</u> at 4 °C.
- 5. Wash three times for 5 minutes each with 15 ml of TBS/T.

I. For Unconjugated Primary Antibodies

- Incubate membrane with appropriate HRP-conjugated secondary antibody (1:2000) and HRP-conjugated anti-biotin antibody (1:1000) to detect biotinylated protein markers in 10 ml of blocking buffer with gentle agitation for 1 hour at room temperature.
- 2. Wash three times for 5 minutes each with 15 ml of TBS/T.

II. For HRP Conjugated Primary Antibodies

Skip to Detection of Proteins (Step D).

III. For Biotinylated Primary Antibodies

- 1. Incubate membrane with HRP-Streptavidin (at the appropriate dilution) in milk for one hour with gentle agitation at room temperature.
- 2. Wash three times for 5 minutes each with 15 ml of TBS/T.

D. Detection of Proteins

- Incubate membrane with 10 ml LumiGLO[®] (0.5 ml 20X LumiGLO[®], 0.5 ml 20X Peroxide and 9.0 ml Milli-Q water) with gentle agitation for 1 minute at room temperature. NOTE: LumiGLO[®] substrate can be further diluted if signal response is too fast.
- Drain membrane of excess developing solution (do not let dry), wrap in plastic wrap and expose to x-ray film. An initial 10-second exposure should indicate the proper exposure time. NOTE: Due to the kinetics of the detection reaction, signal is most intense immediately following LumiGLO[®] incubation and declines over the following 2 hours.

Specificity / Sensitivity

PP5 Antibody detects endogenous levels of total PP5 protein.

Source / Purification

Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to the amino-terminal sequence of human PP5. Antibodies are purified by protein A and peptide affinity chromatography.

Western Blotting

Western blot analysis of extracts from 293, NIH/3T3 and PC12 cells, using PP5 Antibody.

Flow Cytometry

Flow cytometric analysis of HeLa cells, using PP5 Antibody (blue) compared to a nonspecific negative control antibody (red).

Background

Protein phosphatase 5 (PP5) is a member of the serine/threonine phosphatase family that also includes PP1, PP2A and PP2B. PP5 uniquely contains an amino-terminal regulatory domain with three tetratricopeptide repeat (TPR) motifs and a carboxy-terminal catalytic domain (1-3). Through the TPR domain, PP5 interacts with a number of proteins and has been reported to be involved in diverse signal transduction pathways, including glucocorticoid receptor signaling, p53-mediated growth arrest, oxidative stress-mediated apoptosis and the response to ionizing radiation-induced DNA damage (4-8).

- 1. Chen, M.X. and Cohen, P.T. (1997) FEBS Lett. 400, 136-140.
- 2. Andreeva, A.V. and Kutuzov, M.A. (1999) Cell. Signal. 11, 555-562.
- 3. Chinkers, M. Trends Endocrinol. Metab. 12, 28-32.
- 4. Zuo, Z. et al. (1998) J. Biol. Chem. 273, 12250-12258.
- 5. Morita, K. et al. (2001) *EMBO J.* 20, 6028-6036.
- 6. Silverstein, A.M. et al. (1997) J. Biol. Chem. 272, 16224-16230.
- 7. Ali, A. et al. (2004) Genes Dev. 18, 249-254.
- 8. Wechsler, T. et al. (2004) Proc. Natl. Acad. Sci. USA 101, 1247-1252.