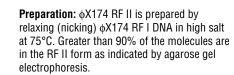


100

BioLabs

1-800-632-7799 info@neb.com

www.neb.com



N3022S

30 µg	Lot: 1221209	Exp: 9/14
1,000 µg/ml	Store at -20°C	

Description: This is the double-stranded, nicked, circular form of $\phi X174$ DNA (relaxed form). The molecular weight of $\phi X174$ DNA is 3.50 X 10⁶ daltons it is 5,386 base pairs in length. Greater than 90% of the molecules are RF II, the remainder are RF I (supercoiled) and linear $\phi X174$ DNA.

Supplied in: 10 mM Tris-HCl (pH 8.0), 1 mM EDTA.

References:

- 1. Sanger, F. et al. (1978) *J. Mol. Biol.* 125, 225.
- 2. Freifelder, D. and Dewitt, R. (1977) *Gene* 1, 385.

CERTIFICATE OF ANALYSIS

N3022S

30 µg	Lot: 1221209	Exp: 9/14
1,000 µg/ml	Store at -20°C	

Description: This is the double-stranded, nicked, circular form of $\phi X174$ DNA (relaxed form). The molecular weight of $\phi X174$ DNA is 3.50 X 10⁶ daltons it is 5,386 base pairs in length. Greater than 90% of the molecules are RF II, the remainder are RF I (supercoiled) and linear $\phi X174$ DNA.

Supplied in: 10 mM Tris-HCl (pH 8.0), 1 mM EDTA.

Preparation: ϕ X174 RF II is prepared by relaxing (nicking) ϕ X174 RF I DNA in high salt at 75°C. Greater than 90% of the molecules are in the RF II form as indicated by agarose gel electrophoresis.

References:

- 1. Sanger, F. et al. (1978) *J. Mol. Biol.* 125, 225.
- 2. Freifelder, D. and Dewitt, R. (1977) *Gene* 1, 385.