Taq DNA Polymerase with ThermoPol[™] II (Mg-free) Buffer

M0321S

in Links

BioLabs

1-800-632-7799

info@neb.com

www.neb.com

 400 units
 5,000 U/ml
 Lot: 0141206

 RECOMBINANT
 Store at -20°C
 Exp: 6/14

Description: *Taq* DNA Polymerase is a thermostable DNA polymerase that possesses a $5^{-} \rightarrow 3^{-}$ polymerase activity (1,2,3) and a 5⁻ flap endonuclease activity (4,5).

It is supplied with 10X ThermoPol II (Mg-free) Reaction Buffer and MgSO₄. 10X ThermoPol II (Mg-free) Reaction Buffer contains a nonionic detergent to increase enzyme stability during longer incubations.

Source: An *E. coli* strain that carries the *Taq* DNA Polymerase gene from *Thermus aquaticus* YT-1

Application:

- PCR
- Primer extension
- Colony PCR
- Long PCR (> 5 kb)

Supplied in: 100 mM KCl, 10 mM Tris-HCl (pH 7.4), 0.1 mM EDTA, 1 mM dithiothreitol, 0.5% Tween $^{\circ}$ 20, 0.5% IGEPAL $^{\circ}$ CA-630 and 50% glycerol.

Reagents Supplied with Enzyme:

10X ThermoPol II (Mg-free) Reaction Buffer 100 mM MgSO₄

Reaction Conditions: 1X ThermoPol II (Mg-free) Reaction Buffer, DNA template, primers, 200 μ M dNTPs (not included), 2 mM MgSO₄ and 1.25 units of *Taq* DNA Polymerase in a total reaction volume of 50 μ I.

1X ThermoPol II (Mg-free) Reaction Buffer:

20 mM Tris-HCl 10 mM (NH₄)₂SO₄ 10 mM KCl 0.1% Triton[®] X-100 pH 8.8 @ 25°C

25°C

Unit Definition: One unit is defined as the amount of enzyme that will incorporate 15 nmol of dNTP into acid insoluble material in 30 minutes at 75°C.

Unit Assay Conditions: 1X ThermoPol Reaction Buffer, 200 μM dNTPs including [^3H]-dTTP and 200 $\mu g/ml$ activated Calf Thymus DNA.

Heat Inactivation: No

Quality Control Assays

5 kb Lambda PCR: 25 cycles of PCR amplification of 5 ng Lambda DNA with 1.25 units of *Taq* DNA Polymerase in the presence of 200 μ M dNTPs, 0.2 μ M primers and 2 mM MgSO₄ in ThermoPol II (Mg-free) Reaction Buffer results in the expected 5 kb product.

3' \rightarrow **5**' **Exonuclease Activity**: Incubation of a 20 µl reaction in ThermoPol Reaction Buffer containing a minimum of 20 units of *Taq* DNA Polymerase with 10 nM fluorescent internally labeled oligonucleotide for 30 minutes at either 37°C or 75°C yields no detectable 3' \rightarrow 5' degradation as determined by capillary electrophoresis.

Endonuclease Activity: Incubation of a 50 μ l reaction in ThermoPol Reaction Buffer containing a minimum of 20 units of *Taq* DNA Polymerase with 1 μ g of supercoiled ϕ X174 DNA for 4 hours at 75°C results in < 10% conversion to the nicked form as determined by agarose gel electrophoresis.

PCR

The Polymerase Chain Reaction (PCR) is a powerful and sensitive technique for DNA amplification (6). *Taq* DNA Polymerase is an enzyme widely used in PCR (7). The following guidelines are provided to ensure successful PCR using New England Biolabs' *Taq* DNA Polymerase. These guidelines cover routine PCR reactions. Amplification of templates with high GC content, high secondary structure, low template concentrations, or amplicons greater than 5 kb may require further optimization.

Reaction setup:

We recommend assembling all reaction components on ice and quickly transferring the reactions to a thermocycler preheated to the denaturation temperature (95°C).

COMPONENT	25 μl REACTION	50 μĺ REACTION	FINAL CONCENTRATION
10X ThermoPol II (Mg-free) Reaction Buffer	2.5 µl	5 µl	1X
100 mM MgSO ₄	0.5 µl	1 µl	2 mM
10 mM dNTPs	0.5 µl	1 µl	200 µM
10 µM Forward Primer	0.5 µl	1 µl	0.2 μM (0.05–1 μM)
10 µM Reverse Primer	0.5 µl	1 µl	0.2 μM (0.05–1 μM)
Taq DNA Polymerase	0.125 µl	0.25 µl	1.25 units/50 µl PCR
Template DNA	variable	variable	<1,000 ng
Nuclease-Free Water	to 25 µl	to 50 µl	

Notes: Gently mix the reaction. Collect all liquid to the bottom of the tube by a quick spin if necessary. Overlay the sample with mineral oil if using a PCR machine without a heated lid.

Transfer PCR tubes from ice to a PCR machine with the block preheated to 95°C and begin thermocycling:

Thermocycling Conditions for a Routine PCR:

STEP	ТЕМР	TIME
Initial Denaturation	95°C	30 seconds
	95°C	15–30 seconds
30 Cycles	45–68°C	15–60 seconds
	68°C	1 minute/kb
Final Extension	68°C	5 minutes
Hold	4–10°C	

General Guidelines:

1. Template:

Use of high quality, purified DNA templates greatly enhances the success of PCR reactions. Recommended amounts of DNA template for a 50 μ l reaction are as follows:

DNA	AMOUNT
Genomic	1 ng–1 μg
Plasmid or Viral	1 pg–1 ng

2. Primers:

Oligonucleotide primers are generally 20–40 nucleotides in length and ideally have a GC content of 40–60%. Computer programs such as Primer3 (http://frodo.wi.mit.edu/primer3) can be used to design or analyze primers. The final concentration of each primer in a PCR reaction may be 0.05–1 μ M, typically 0.1–0.5 μ M.

3. Mg++ and additives:

Mg⁺⁺ concentration of 1.5–2.0 mM is optimal for most PCR products generated with *Taq* DNA Polymerase. The Mg-free buffer formulation along with supplemental MgSO₄ solution gives the user complete control over the final Mg⁺⁺ concentration in the reaction.

Amplification of some difficult targets, like GC-rich sequences, may be improved with additives, such as DMSO (8) or formamide (9).

4. Deoxynucleotides:

The final concentration of dNTPs is typically 200 μM of each deoxynucleotide.

- Taq DNA Polymerase Concentration: We generally recommend using Taq DNA Polymerase at a concentration of 25 units/ml (1.25 units/50 µl reaction). However, the optimal concentration of Taq DNA Polymerase may range from 5–50 units/ml (0.25–2.5 units/50 µl reaction) in specialized applications.
- 6. Denaturation:

An initial denaturation of 30 seconds at 95°C is sufficient for most amplicons from pure DNA templates. For difficult templates such as GC-rich sequences, a longer denaturation of 2–4 minutes at 95°C is recommended prior to PCR cycling to fully denature the template. With colony PCR, an initial 5 minute denaturation at 95°C is recommended.

During thermocycling a 15–30 second denaturation at 95°C is recommended.

7. Annealing:

The annealing step is typically 15–60 seconds. Annealing temperature is based on the T_m of the primer pair and is typically 45–68°C. Annealing temperatures can be optimized by doing a temperature gradient PCR starting 5°C below the calculated T_m . We recommend using NEB's T_m Calculator, available at www. neb.com/TmCalculator to determine appropriate annealing temperatures for PCR.

When primers with annealing temperatures above 60°C are used, a 2-step PCR protocol is possible (see #10).

8. Extension:

The recommended extension temperature is 68°C. Extension times are generally 1 minute per kb. A final extension of 5 minutes at 68°C is recommended.

9. Cycle number:

Generally, 25–35 cycles yields sufficient product. Up to 45 cycles may be required to detect low-copy-number targets.

10. 2-step PCR:

When primers with annealing temperatures above 60°C are used, a 2-step thermocycling protocol is possible.

Thermocycling Conditions for a Routine 2-Step PCR:

STEP	ТЕМР	тіме
Initial Denaturation	95°C	30 seconds
20.0.1	95°C	15–30 seconds
30 Cycles	60–68°C	1 minute/kb
Final Extension	60–68°C	5 minutes
Hold	4–10°C	

11. PCR product:

The PCR products generated using *Taq* DNA Polymerase contain dA overhangs at the 3'-end; therefore the PCR products can be ligated to dT/dU-overhang vectors.

References:

1. Chien, A., Edgar, D.B. and Trela, J.M. (1976) *J. Bact.*, 127, 1550–1557.

- 2. Kaledin, A.S., Sliusarenko, A.G. and Gorodetskii, S.I. (1980) *Biokhimiya*, 45, 644-651.
- Lawyer, F.C. et al. (1993) *PCR Methods and Appl.*, 2, 275–287.
 Longley, M.J., Bennett, S.E. and Mos-
- Longley, M.J., Bennett, S.E. and Mosbaugh D.W. (1990) *Nucleic Acids Res.*, 18, 7317–7322.
- Lyamichev, V., Brow, M.A. and Dahlberg, J.E. (1993) Science, 260, 778–783.
- Šaiki Ř.K. et al. (1985) *Science*, 230, 1350–1354.
- 7. Powell, L.M. et al. (1987) Cell, 50, 831-840.
- 8. Sun, Y., Hegamyer, G. and Colburn, N. (1993) *Biotechniques*, 15, 372–374.
- 9. Sarkar, G., Kapelner, S. and Sommer, S.S. (1990) *Nucleic Acids Res.*, 18, 7465.

Companion Products Sold Separately:

oompanion i ro	
Magnesium Sulf #B1003S	ate (MgS0 ₄) Solution 6.0 ml
Diluent F #B8006S	4.0 ml
ThermoPol Read #B9004S	tion Buffer Pack 6.0 ml
Buffer Pack	lg-Free) Reaction
#B9005S	6.0 ml
ThermoPol DF (I Reaction Buffer #B9013S	•
<i>Taq</i> PCR Kit #E5000S	200 Reactions
<i>Taq</i> 2X Master N #M0270S #M0270L	lix 100 Reactions 500 Reactions
Quick-Load® <i>Tad</i> #M0271S #M0271L	7 2X Master Mix 100 Reactions 500 Reactions
<i>Taq</i> 5X Master N #M0285S	lix 100 Reactions

#M0285S 100 Reactions #M0285L 500 Reactions

Deoxynucleotide Solution Set#N0446S25 μmol each

Deoxynucleotide Solution Mix#N0447S8 μmol each#N0447L40 μmol each

QUICK-LOAD $^{\otimes}$ is a registered trademark of New England Biolabs, Inc. THERMOPOL $^{\cong}$ is a trademark of New England Biolabs, Inc.

IGEPAL[®] is a registered trademark of Rhodia Operations. TRITON[®] is a registered trademark of Union Carbide Corporation. TWEEN[®] is a registered trademark of Uniqema Americas LLC.

