hAAG

1-800-632-7799 info@neb.com www.neb.com

M0313S

Description: Human Alkyladenine DNA Glycosylase (hAAG) excises alkylated and oxidative DNA damaged sites, including 3-methyladenine, 7-methylguanine, 1,N6-ethenoadenine and hypoxanthine. hAAG catalyzes the hydrolysis of the N-glycosidic bond to release the damaged base. hAAG is also known as methylpurine DNA glycosylase (MPG) (1,2,3) or 3-methyladenine-DNA glycosylase (ANPG) (4).

Source: An *E. coli* strain which carries the cloned truncated human AAG gene (1)

Applications:

- Single cell gel electrophoresis (Comet Assay) (5,6,7)
- Alkaline elution (8)
- Alkaline unwinding (9)

Supplied in: 100 mM KCl, 10 mM Tris-HCl (pH7.4), 0.1 mM EDTA, 1 mM dithiothreitol, 0.5% Tween 20, 0.5% NP-40 and 50% glycerol.

Reagents Supplied with Enzyme:

10X ThermoPol Buffer.

Reaction Conditions: 1X ThermoPol Buffer. Incubate at 37°C.

1X ThermoPol Reaction Buffer:

10 mM KCl 10 mM $(NH_4)_2SO_4$ 20 mM Tris-HCl 2 mM MgSO $_4$ 0.1% Triton X-100 pH 8.8 @ 25°C

When using a buffer other than the optimal (supplied) NEBuffer, it may be necessary to add more enzyme to achieve complete digestion.

Unit Definition: One unit is defined as the amount of enzyme required to create an AP site from 1 pmol of a 34-mer oligonucleotide duplex containing a single deoxyinosine site in a total reaction volume of 10 µl in 1 hour at 37°C.

Unit Assay Conditions: 1X ThermoPol Buffer containing 5 pmol of fluorescently labeled oligonucleotide duplex in a total reaction volume of 10 µl.

Molecular Weight: 25.752 Daltons

Quality Control Assays

Physical Purity: Purified to > 95% homogeneity as determined by SDS-PAGE analysis using Coomassie Blue detection.

16-Hour Incubation: A 50 μ l reaction containing 1 μ g of λ DNA (HindIII digest) and 100 units of hAAG incubated for 16 hours at 37°C resulted in a DNA pattern free of detectable nuclease degradation as determined by agarose gel electrophoresis.

Exonuclease Activity: Incubation of a 50 μl reaction containing 50 units of hAAG in NEBuffer 1 with 1 μg of a mixture of single and double-stranded [³H] *E. coli* DNA (10⁵ cpm/μg) for 4 hours at 37°C released < 0.1% of the total radioactivity.

Endonuclease Activity: Incubation of a 50 μ I reaction containing 100 units of hAAG with 1 μ g ϕ X174 RF I DNA for 4 hours at 37°C resulted in < 10% conversion to RFII as determined by agarose gel electrophoresis.

Heat Inactivation: 65°C for 20 minutes.

(see other side)

CERTIFICATE OF ANALYSIS

hAAG

1-800-632-7799 info@neb.com www.neb.com

111210

M0313S

RR Yes

Description: Human Alkyladenine DNA Glycosylase (hAAG) excises alkylated and oxidative DNA damaged sites, including 3-methyladenine, 7-methylguanine, 1,N6-ethenoadenine and hypoxanthine. hAAG catalyzes the hydrolysis of the N-glycosidic bond to release the damaged base. hAAG is also known as methylpurine DNA glycosylase (MPG) (1,2,3) or 3-methyladenine-DNA glycosylase (ANPG) (4).

Source: An *E. coli* strain which carries the cloned truncated human AAG gene (1)

Applications:

- Single cell gel electrophoresis (Comet Assay) (5,6,7)
- Alkaline elution (8)
- Alkaline unwinding (9)

Supplied in: 100 mM KCl, 10 mM Tris-HCl (pH7.4), 0.1 mM EDTA, 1 mM dithiothreitol, 0.5% Tween 20, 0.5% NP-40 and 50% glycerol.

Reagents Supplied with Enzyme:

10X ThermoPol Buffer.

Reaction Conditions: 1X ThermoPol Buffer. Incubate at 37°C.

1X ThermoPol Reaction Buffer:

 $\begin{array}{c} \text{10 mM KCI} \\ \text{10 mM (NH}_4)_2 \text{SO}_4 \\ \text{20 mM Tris-HCI} \\ \text{2 mM MgSO}_4 \\ \text{0.1\% Triton X-100} \\ \text{pH 8.8 @ 25°C} \end{array}$

When using a buffer other than the optimal (supplied) NEBuffer, it may be necessary to add more enzyme to achieve complete digestion.

Unit Definition: One unit is defined as the amount of enzyme required to create an AP site from 1 pmol of a 34-mer oligonucleotide duplex containing a single deoxyinosine site in a total reaction volume of 10 µl in 1 hour at 37°C.

Unit Assay Conditions: 1X ThermoPol Buffer containing 5 pmol of fluorescently labeled oligonucleotide duplex in a total reaction volume of 10 µl.

Molecular Weight: 25,752 Daltons

Quality Control Assays

Physical Purity: Purified to > 95% homogeneity as determined by SDS-PAGE analysis using Coomassie Blue detection.

16-Hour Incubation: A 50 μ l reaction containing 1 μ g of λ DNA (HindIII digest) and 100 units of hAAG incubated for 16 hours at 37°C resulted in a DNA pattern free of detectable nuclease degradation as determined by agarose gel electrophoresis.

Exonuclease Activity: Incubation of a 50 μ l reaction containing 50 units of hAAG in NEBuffer 1 with 1 μ g of a mixture of single and double-stranded [3 H] *E. coli* DNA ($^{10^5}$ cpm/ μ g) for 4 hours at 37°C released < 0.1% of the total radioactivity.

Endonuclease Activity: Incubation of a 50 μ l reaction containing 100 units of hAAG with 1 μ g ϕ X174 RF I DNA for 4 hours at 37°C resulted in < 10% conversion to RFII as determined by agarose gel electrophoresis.

Heat Inactivation: 65°C for 20 minutes.

(see other side)

References:

- 1. O'Brien, P. and Ellenberger, T. (2003) Biochemistry 42, 12418–12429.
- 2. Abner, C.W. et al. (2001) *J. Biol. Chem.* 276, 13379–13387.
- 3. Samson, L. (1991) *Proc. Natl. Acad.* Sci. 88, 9127–9131.
- 4. Lau, A.Y. et al. (1998) Cell, 95, 249-258.
- 5. Singh, N. et al. (1961) *Experimental Cell Reseach* 175, 184–191.
- 6. Collins, A. et al. (1993) *Carcinogenesis* 14, 1733–1735.
- 7. Collins, A. et al. (1996) *Environmental Health Perspectives* 104, 465–469.
- 8. Pflaum, M. et al. (1998) *Free Rad. Res.* 29, 585–594.
- 9. Hartwig, A. et al. (1996) *Toxicology Letters* 88, 85–90.

Page 2 (M0313)

References:

- 1. O'Brien, P. and Ellenberger, T. (2003) Biochemistry 42, 12418–12429.
- 2. Abner, C.W. et al. (2001) *J. Biol. Chem.* 276, 13379–13387.
- 3. Samson, L. (1991) *Proc. Natl. Acad.* Sci. 88, 9127–9131.
- 4. Lau, A.Y. et al. (1998) Cell, 95, 249-258.
- 5. Singh, N. et al. (1961) *Experimental Cell Reseach* 175, 184–191.
- 6. Collins, A. et al. (1993) *Carcinogenesis* 14, 1733–1735.
- 7. Collins, A. et al. (1996) *Environmental Health Perspectives* 104, 465–469.
- 8. Pflaum, M. et al. (1998) *Free Rad. Res.* 29, 585–594.
- 9. Hartwig, A. et al. (1996) *Toxicology Letters* 88, 85–90.