Catalog Number: 195092 Carbenicillin, Disodium Salt

Structure:

Molecular Formula: C₁₇H₁₆N₂O₆SNa₂

Molecular Weight: 422.4

CAS # 4800-94-6

Synonym: α -Carboxybenzylpenicillin; BRL-2064; CP-15639-2; Anabactyl; Carbapen; Carbecin; Geopen; Hyoper; Microcillin; Pyocianil; Pyopen; [2S-(2. α , 5. α , 6. β)]-6-[(Carboxyphenylacetyl) amino]- 3, 3-dimethyl-7-oxo-4-thia-1-azabicyclo [3. 2. 0] heptane-2-carboxylic acid, disodium salt; N-(2-carboxy- 3, 3-dimethyl- 7-oxo-4-thia-1- azabicyclo [3. 2. 0] hept-6-yl)-2-phenylmalonamic acid, disodium salt; 6-(α -carboxyphenylacetamido) penicillanic acid, disodium salt; α -phenyl (carboxymethylpenicillin), disodium salt

Physical Description: Fine white powder

Recommended Storage: $+4^{\circ}C$

pKa (in water): 3.3

Description: Semi-synthetic antibiotic related to penicillin. It is a benzyl penicillin derivative with substitution of α -carboxyl group n the benzyl side chain. The product interferes with final cell wall synthesis of susceptible bacteria. It is completely ionized in the blood.

Carbencillin disodium is about 50% reversibly protein bound in plasma and its tissue distribution is similar to other penicillins.

Though Carbencillin disodium has substantial *in vitro* activity against a variety of both gram-positive and gram-negative microorganisms, the most important aspect of its profile is in its antipseudomonal and antiproteal effect.

In vitro studies have demonstrated the susceptibility of most strains of the following organisms:

Staphylococcus aureus	<i>Enterobacter</i> species
(non-penicillinase producing)	Proteus mirabilis
Staphylococcus epidermidis	<i>Morganella morganii</i> (formerly
	Proteus morganii)
Streptococcus pneumoniae	<i>Providencia rettgeri</i> (formerly
	Proteus rettgeri)
Beta-hemolytic Streptococci	Anaerobic bacteria, including:
Streptococcus faecalis	<i>Bacteriodes</i> species
Proteus vulgaris	Peptostreptococcus species
Escherichia coli	Peptococcus species
<i>Salmonella</i> species	Clostridium species
Pseudomonas aeruginosa	Fusobacterium species
Hemophilus influenzae	
<i>Neisseria</i> species	

In vitro synergism between Carbencillin disodium and aminoglycosides in certain strains of *Pseudomonas aeruginosa* has been demonstrated.

Some of the pathogenic strains of such microorganisms as *Herellea, Mima, Citrobacter*, and *Serratia* have shown susceptibility to Carbencillin disodium.

Resistance: Most *Klebsiella* species and some *Serratia* species are usually resistant to the action of Carbencillin disodium. Some strains of *Pseudomonas* have developed resistance to Carbencillin disodium fairly rapidly.

Carbencillin disodium is not stable in the presence of penicillinase producing bacteria.

General Usage: 105 units/liter (5 - 50 ug/ml) in cell culture; approximately 200 mg/kg *in vivo*. It is typically stable in media at 37° C for approximately 3 days.⁵ Solubility: Soluble in water (50 mg/ ml) and alcohol

References:

- 1. Merck Index, 12th Ed., No. 1838.
- 2. Naumann, Kempf, Arzneimittel-Forsch., v. 19, 1222 (1969)
- 3. Butler et al., J. Infec. Dis., v. 122, Suppl., 81 (1970)
- 4. Goldenthal, Toxicol. Appl. Pharmacol., v. 18, 185
- Perlman, D., "Use of Antibiotics in cell culture media." Methods in Enzymology: Cell Culture, Jakoby, W.B. and Pastan, I.H. (eds.), Academic Press: New York, p. 112 (1979).