Cell Explorer™ Live Cell Labeling Kit *Green Fluorescence* | Ordering Information | Storage Conditions | Instrument Platform | |-----------------------------------|---|-------------------------| | Product Number: 22607 (10 plates) | Keep in freezer Protected from moisture and light | Fluorescence microscope | ## Introduction Our Cell ExplorerTM Live Cell Labeling Kits are a set of tools which can be used to label cells for fluorescence microscopic and flow cytometric investigations of cellular functions. The effective labeling of cells provides a powerful method for studying cellular events in a spatial and temporal context. This particular kit is designed to uniformly label live cells in green fluorescence. The kit uses non-fluorescent Calcein GreenTM that becomes strongly fluorescent upon entering into live cells. Calcein GreenTM is a hydrophobic compound that easily permeates intact live cells. The hydrolysis of the non-fluorescent Calcein GreenTM by intracellular esterases generates the strongly fluorescent hydrophilic calcein that is well-retained in the cell cytoplasm. Cells grown on black wall/clear bottom plates or slides can be stained and quantified in less than two hours. This Cell ExplorerTM Live Cell labeling kit can be readily adapted for a wide variety of fluorescence platforms such as microplate assays, flow cytometry and fluorescence microscope. It is useful for a variety of studies, including cell adhesion, chemotaxis, multidrug resistance, cell viability, apoptosis and cytotoxicity. The kit provides all the essential components with an optimized cell-labeling protocol (Ex/Em=490/525), and can be used for both proliferating and non-proliferating cells (either suspension or adherent cells). ## **Kit Key Features** *Convenient:* Formulated to have minimal hands-on time. It can be applied to a broad spectrum of samples. Easily adapted to automation without a separation step. ## **Kit Components** | Components | Amount | |--|--------------------------| | Component A: Calcein Green™ | 1 vial | | Component B: 10X Assay Buffer | 10 bottles (1 mL/bottle) | | Component C: HHBS (Hanks' buffer with 20 mM Hepes) | 1 bottle (100 mL) | ## **Protocol** ### **Brief Summary** Prepare cells in growth medium \rightarrow Add Calcein GreenTM working solution 100 μ L/well for 96-well plates or 25 μ L/well for 384-well plates \rightarrow Stain the cells at RT for 30 minutes to 2 hours \rightarrow Examine the specimen under microscope at Ex/Em = 490/525 nm Note: Thaw all the components at room temperature before opening. #### 1. Prepare cells: - 1.1 For adherent cells: Plate cells overnight in growth medium at 10,000 to 40,000 cells/well/100 μ L for 96-well plates or 2,500 to 10,000 cells/well/25 μ L for 384-well plates. - 1.2 For non-adherent cells: Centrifuge the cells from the culture medium and then suspend the cell pellets in culture medium at 50,000-100,000 cells/well/100 μ L for 96-well poly-D lysine plates or 10,000-25,000 cells/well/25 μ L for 384-well poly-D lysine plates. Centrifuge the plates at 800 rpm for 2 minutes with brake off prior to the experiment. Note: Each cell line should be evaluated on an individual basis to determine the optimal cell density. ### 2. Prepare Calcein GreenTM stain solution: - 2.1 Prepare Calcein GreenTM stock solution: Add 200 μL of DMSO into Calcein GreenTM vial (Component A) and mix them well. - Note: $20 \mu L$ of Calcein GreenTM stock solution is enough for 1 plate. Unused Calcein GreenTM stock solution can be aliquoted and stored at < -20 °C for more than one month if the tubes are sealed tightly. Avoid repeated freeze-thaw cycles and protect from light. - 2.2 <u>Make 1X assay buffer</u>: Add **9 mL** of HHBS (Component C) into 10X Assay Buffer (Component B), and mix them well. - Note: 10 mL of 1X assay buffer is enough for one plate. Aliquot and store unused 1X assay buffer at < -20 °C. Avoid repeated freeze-thaw cycles and protect from light. - 2.3 <u>Prepare Calcein GreenTM working solution for one cell plate</u>: Add 20 μL of DMSO reconstituted Calcein GreenTM stock solution (from Step 2.1) into 10 mL of 1X assay buffer (from Step 2.2), and mix them well. The working solution is stable for at least 2 hours at room temperature. #### 3. Stain the cells: - 3.1 Add 100 μL/well (96-well plate) or 25 μL/well (384-well plate) Calcein GreenTM working solution (from Step 2.3) into the cell plate. - Note: You may replace the culture medium with 100 µL of HHBS buffer or an appropriate buffer. - 3.2 Incubate the cells in a 37 °C, 5% CO₂ incubator for 30 minutes to 2 hours. - 3.3 Image the cells using a fluorescence microscope with FITC filters (Ex/Em = 490/525 nm). *Note1: DO not wash the cells.* Note2: Alternatively, fix the cells at this point. Store the fixed cells at 4 °C and image the cells later. **Figure 1.** Image of CPA cells were stained with Cell Explorer™ Live Cell Labeling Kit *Green Fluorescence* in a Costar black 96-well plate ## References - 1. Wolff M, Wiedenmann J, Nienhaus GU, Valler M, Heilker R. (2006) Novel fluorescent proteins for high-content screening. Drug Discov Today, 11, 1054. - 2. Lee S, Howell BJ. (2006) High-content screening: emerging hardware and software technologies. Methods Enzymol, 414, 468. - 3. Haasen D, Schnapp A, Valler MJ, Heilker R. (2006) G protein-coupled receptor internalization assays in the high-content screening format. Methods Enzymol, 414, 121. Warning: This kit is only sold to end users. Neither resale nor transfer to a third party is allowed without written permission from AAT Bioquest. Chemical analysis of the kit components is strictly prohibited. Please call us at 408-733-1055 or e-mail us at info@aatbio.com if you have any questions.