Amplite™ Fluorimetric Goat Anti-Mouse IgG-HRP ELISA Assay Kit *Red Fluorescence*

Ordering Information	Storage Conditions	Instrument Platforms	
Product Number: 11540 (10 plotes)	Different storage conditions are required	Fluorescence microplate readers	
Product Number: 11540 (10 plates)	Different storage conditions are required	Absorbance microplate readers	

Introduction

Horseradish Peroxidase (HRP) is a small molecule (MW ~40 KD) that is widely used in a variety of biological detections. HRP conjugates are extensively used as secondary detection reagents in ELISAs, immuno-histochemical techniques as well as Northern, Southern and Western blot analyses. Due to its small size, HRP rarely causes any steric hindrance problem with the antibody/antigen complex formation. In addition, HRP conjugates are much more stable than other enzyme conjugates, making the HRP-based ELISA assays much more robust.

Our AmpliteTM Fluorimetric ELISA Assay Kit contains all the essential components including our fluorogenic AmpliteTM Red HRP substrate for ELISA detection. The kit provides an optimized assay protocol. It can detect as little as 0.4 ng/well of a monoclonal antibody. Its signal can be easily read by either a fluorescence microplate reader at Ex/Em = ~540/590 nm or an absorbance microplate reader at ~576 nm. It has been used for the assays in which goat anti-mouse IgG is served as a secondary detection agent.

Kit Key Features

Sensitive: Detect as low as 12,000 dilutions of goat anti-mouse IgG-HRP conjugate.

Continuous: Can be easily adapted to automation without a separation step. **Convenient:** Formulated to have minimal hands-on time. No wash is required.

Non-Radioactive: No special requirements for waste treatment.

Kit Components

Components	Amount	Storage
Component A: Amplite TM Red Peroxidase Substrate	2 vials	-20 °C
Component B: H ₂ O ₂	1 vial (3% stabilized solution, 500 μL)	4 °C
Component C: Assay Buffer	1 bottle (100 mL)	4 °C
Component D: DMSO	1 vial (1 mL)	4 °C
Component E: Goat Anti-Mouse IgG-HRP Conjugate	1 vial (25 μL)	4 °C

Assay Protocol for One Plate

Brief Summary

Prepare ELISA plate→ Prepare peroxidase reaction mixture → Add 100 µL/well of peroxidase reaction mixture into the ELISA plate → Incubate at room temperature for 15-60 minutes → Monitor fluorescence intensity at Ex/Em = 540/590 nm

Note: Thaw all the kit components at room temperature before starting the experiment.

1. Prepare ELISA plate:

- 1.1 <u>Prepare ELISA microplate (including appropriate controls)</u>: Perform all necessary ELISA preparation steps.
- 1.2 <u>Make goat anti-mouse IgG-HRP conjugate working solution</u>: Add 2 μL of goat anti-mouse IgG-HRP conjugate (Component E) to 10 mL of PBS with 1% BSA (PBS-BSA, not included).

- Notes 1: 10 mL of goat anti-mouse IgG-HRP conjugate working solution is enough for 1 plate. The concentration of this goat anti-mouse IgG-HRP conjugate working solution is recommended as an initial concentration to try;
 - 2: The optimal concentration for each particular application should be determined empirically.
- 1.3 Wash the ELISA wells three times with PBS containing 0.02% to 0.05% Tween[®] 20 (PBS-Tween) and drain.
- 1.4 Add 100 μL of the diluted HRP conjugate working solution (from Step 1.2) into each well (from Step 1.3)
- 1.5 Incubate at room temperature for 30 minutes. Drain off the HRP conjugate.
- 1.6 Wash the wells three times with PBS-Tween and drain.

2. Prepare stock solutions:

- 2.1 200X AmpliteTM Red peroxidase substrate stock solution: Add 250 μL of DMSO (Component D) into the vial of AmpliteTM Red Peroxidase Substrate (Component A). The stock solution should be used promptly, and any remaining solution should be aliquoted and refrozen at -20 °C.
 - Note: $50 \mu L$ of the AmpliteTM Red peroxidase substrate stock solution is enough for 1 plate. Aliquot and store unused DMSO stock solution at -20 °C. Avoid repeated freeze-thaw cycles.
- 2.2 20 mM H₂O₂ stock solution: Add 22.7 μL of 3% H₂O₂ (0.88 M, Component B) into 977 μL of Assay Buffer (Component C).

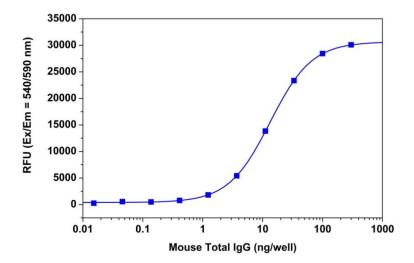
Note: The diluted H_2O_2 stock solution is not stable. The unused portion should be discarded.

3. Prepare peroxidase reaction mixture:

Prepare the peroxidase reaction mixture according to Table 1 and keep from light.

Table 1	Proxidase	Reaction	Mixture	for One	96-well	Plate (13	7)
Table 1.	FIUXIUASE	NEACHOL	WHAIDIG	101 0115	7U-WEII	FIAIR ULZ	

Components	Volume
200X Amplite™ Red peroxidase substrate stock solution (from Step 2.1)	50 μL
20 mM H ₂ O ₂ stock solution (from Step 2.2)	100 μL
Assay buffer (Component C)	9.85 mL
Total volume	10 mL


4. Run peroxidase assay in ELISA plate:

- 4.1 Add 100 μ L of peroxidase reaction mixture (from Step 3) into each drained microplate well containing the samples and controls (from Step 1.6).
- 4.2 Incubate the reaction at room temperature for 30 minutes or longer, protected from light.
- 4.3 Monitor the fluorescence increase with a fluorescence plate reader at excitation 530-570 nm (optimal at 540 nm) and emission 590-600 nm.

Note: The plate can also be read by an absorbance microplate reader at the wavelength of 576 ± 5 nm. The absorption detection has lower sensitivity compared to fluorescence reading.

Data Analysis

For each sample, correct for background fluorescence or absorbance by subtracting the values derived from the negative.

Figure 1 Detection of total mouse IgG using the AmpliteTM Fluorimetric Goat Anti-Mouse IgG-HRP ELISA Kit. Mouse IgG was diluted into 3 μg/mL and made 1 to 3 serial dilutions in 0.2 M sodium bicarbonate buffer, pH 9.4. 100 μL/well serial dilutions were coated into a solid black 96-well plate at 4 °C overnight, and blocked with 3% milk in PBS and 0.02% Tween-20 at 4 °C overnight. The wells were washed and assayed by using the reagents. 1 to 5000 dilutions of goat anti-mouse IgG-HRP conjugate were used. The reactions were incubated for 10 to 60 minutes and then measured for fluorescence at Ex/Em = 540/590 nm using Gemini fluorescence microplate reader (Molecular Devices). As low as 0.4 ng/well of total mouse IgG can be detected with 10 minutes incubation (n=3).

References

- 1. Porstmann, B., Porstmann, T., Nugel, E. and Evers, U. (1985). Which of the commonly used marker enzymes gives the best results in colorimetric and fluorimetric enzyme immunoassays: horseradish peroxidase, alkaline phosphatase, β-galactosidase? *J. Immunol. Meth.* 79, 27-37.
- 2. Porstmann, B., Porstmann, T., Nugel, E. and Evers, U. (1985). Which of the commonly used marker enzymes gives the best results in colorimetric and fluorimetric enzyme immunoassays: horseradish peroxidase, alkaline phosphatase, β-galactosidase? *J. Immunol. Meth.* 79, 27-37.
- 3. Wordinger, R.J., Miller, G.W. and Nicodemus, D.S. (1987). *Manual of Immunoperoxidase Techniques*, 2nd *Edition*. Chicago: American Society of Clinical Pathologists Press, pp. 23-24.
- 4. Yolken, R.H. (1982). Enzyme immunoassays for the detection of infectious antigens in body fluids: current limitations and future prospects. Rev. Infect. Dis. 4(1), 35-68.
- 5. Cordell, J.L., et al. (1984). Immunoenzymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (APAAP complexes). *J. Histochem. Cytochem.* **32**, 219-229.

Warning: This kit is only sold to end users. Neither resale nor transfer to a third party is allowed without written permission from AAT Bioquest. Chemical analysis of the kit components is strictly prohibited. Please call us at 408-733-1055 or e-mail us at info@aatbio.com if you have any questions.