Amplite[™] Intracellular Fluorimetric Hydrogen Peroxide Assay Kit *Green Fluorescence*

Ordering Information	Storage Conditions	Instrument Platform
Product Number: 11503 (200 assays)	Keep in freezer Avoid exposure to light	Fluorescence microplate readers

Introduction

Hydrogen peroxide (H_2O_2) is a reactive oxygen metabolic by-product that serves as a key regulator for a number of oxidative stress-related states. It is involved in many biological events that are linked to asthma, atherosclerosis, diabetic vasculopathy, osteoporosis, a number of neurodegenerative diseases and Down's syndrome. The measurement of this reactive species is helpful for determining how oxidative stress modulates various intracellular pathways.

This AmpliteTM Intracellular Fluorimetric Hydrogen Peroxide Assay Kit uses our unique ROS GreenTM hydrogen peroxide sensor to quantify hydrogen peroxide in live cells. ROS GreenTM is cell-permeable, and generates the green fluorescence when it reacts with hydrogen peroxide. The kit is an optimized "mix and read" assay format that is compatible with HTS liquid handling instruments. The AmpliteTM Intracellular Fluorimetric Hydrogen Peroxide Assay Kit provides a sensitive, one-step fluorometric assay to detect as little as 0.3 nanomoles of H_2O_2 in a 100 µL assay volume (3 µM). The assay can be performed in a convenient 96-well or 384-well microtiter-plate format. Its signal can be easily read by either a fluorescence microplate reader at Ex/Em = 490/520 nm for H_2O_2 detection in solution or a fluorescence microscopy for live cell H_2O_2 imaging.

Kit Key Features				
Broad Application:	Can be used for quantifying hydrogen peroxide in live cells, in solutions, and in cell			
	extracts.			
Continuous:	Easily adapted to automation without a separation step.			
Convenient:	Formulated to have minimal hands-on time. No wash is required.			
Non-Radioactive:	No special requirements for waste treatment.			

Kit Components

Components	Amount
Component A: Amplite [™] Green Peroxide Sensor	1 vial
Component B: H ₂ O ₂	1 vial (3% stabilized solution, 200 μL)
Component C: Assay Buffer	1 bottle (20 mL)
Component D: DMSO	1 vial (200 μL)

Assay Protocol for One 96-well Plate

Brief Summary

Prepare H_2O_2 reaction mixture (50 µL) \rightarrow Add H_2O_2 standards or test samples (50 µL) \rightarrow Incubate at room temperature for 15-60 minutes \rightarrow Read fluorescence intensity at Ex/Em = 490/520 nm

Note: Thaw all the kit components at room temperature before starting the experiment.

1. Prepare stock solutions:

- 1.1 <u>AmpliteTM Green Peroxide Sensor stock solution (250X)</u>: Add 50 μL of DMSO (Component D) into the vial of AmpliteTM Green Peroxide Sensor (Component A). The stock solution should be used promptly. Any remaining solution should be aliquoted and refrozen at -20 °C. *Note: Avoid repeated freeze-thaw cycles and protect from light.*
- 1.2 <u>20 mM H₂O₂ stock solution</u>: Add 22.7 μL of 3% H₂O₂ (0.88 M, Component B) into 977μL of Assay Buffer (Component C).

Note: The diluted H_2O_2 *solution is not stable. The unused portion should be discarded.*

2. Prepare 1X Amplite[™] Green Peroxide Sensor working solution:

Add 20 μ L of AmpliteTM Green Peroxide Sensor stock solution (250X, from Step 1.1) into 5 mL of Assay Buffer (Component C).

3. Prepare serially diluted H_2O_2 standards (0 to 1000 μ M):

- 3.1 Add 50 μL of 20 mM H₂O₂ solution (from Step 1.2) into 950 μL of Assay Buffer (Component C) to get 1000 μM H₂O₂ solution.
- 3.2 Take 200 μ L of 1000 μ M H₂O₂ solution to perform 1:3 serial dilutions to get 300, 100, 30, 10, 3, 1, 0.3 and 0 μ M serially diluted H₂O₂ stands.
- 3.3 Add H₂O₂ standards and H₂O₂-containing test samples into a solid black 96-well microplate as described in Tables 1 and 2.

BL	BL	TS	TS	 			
HS1	HS1			 			
HS2	HS2						
HS3	HS3						
HS4	HS4						
HS5	HS5						
HS6	HS6						
HS7	HS7						

Table 1. Layout of H₂O₂ standards and test samples in a solid black 96-well microplate

Note: HS= H₂O₂ *Standards; BL*=*Blank Control; TS*=*Test Samples*

Table 2. Reagent composition for each well

H ₂ O ₂ Standards	Blank Control	Test Sample
Serial Dilutions*: 50 µL	Assay Buffer (Component C): 50 µL	50 μL

4. Run H₂O₂ assay in supernatants reaction:

4.1 Add 50 μL of 1X Amplite[™] Green Peroxide Sensor working solution (from Step 2) to each well of the H₂O₂ standard, blank control, and test samples (see Step 3.3) to make the total H₂O₂ assay volume of 100 μL/well.

Note: For a 384-well plate, add 25 μ *L of sample and 25* μ *L of 1X Amplite*TM *Green peroxide Sensor working solution into each well.*

- 4.2 Incubate the reaction at room temperature for 15 to 30 minutes, protected from light.
- 4.3 Monitor the fluorescence increase at $Ex/Em = 490 \pm 10/520 \pm 10$ nm (optimal Ex/Em = 490/520) with a fluorescence plate reader.

5. Run H₂O₂ assay in live cells:

AmpliteTM Green Peroxide Sensor can be loaded passively into living cells and report the micromolar changes in intracellular H_2O_2 concentrations. The following is a suggested microscope imaging protocol that can be modified to meet specific research needs.

- 5.1 Activate the cells as desired.
- 5.2 Wash the cells with PBS buffer, incubated the cells with 100 µL/well 1X Amplite[™] Green Peroxide Sensor working solution (from Step 2) for 5 to 60 minutes or your desired time. *Note: For a 384-well plate, add 25 µL/well of 1X Amplite*[™] *Green Peroxide Sensor working solution.*
- 5.3 Monitor the fluorescence increase at excitation 490 nm and emission at 525nm using a fluorescence plate reader with bottom read mode. Or image the fluorescence change with a fluorescence microscope using FITC channel.

Data Analysis

Figure 1. Images of Live CHO-K1 cells in a Costar black 96-well plate. Live CHO-K1 cells were stained with AmpliteTM Intracellular Fluorimetric Hydrogen Peroxide Assay Kit. A: Control cells. B: Cells treated with 100 μ M H₂O₂ at room temperature for 5 minutes.

References

- 1. Hoffmann, O. M., Becker, D., and Weber, J. R. (2007) J Cereb Blood Flow Metab.
- 2. Funk, R. S., and Krise, J. P. (2007) Mol Pharm 4, 154-9.
- 3. Krebs, B., Wiebelitz, A., Balitzki-Korte, B., Vassallo, N., Paluch, S., Mitteregger, G., Onodera, T., Kretzschmar, H. A., and Herms, J. (2007) *J Neurochem* **100**, 358-67.
- 4. Yang, Y., Xu, S., An, L., and Chen, N. (2007) J Plant Physiol.
- 5. Lee, J. E., Kim, H., Jang, H., Cho, E. J., and Youn, H. D. (2007) J Neurochem.
- 6. Goth, L. (2006) *Redox Rep* **11**, 281-2.
- 7. Laloi, C., Stachowiak, M., Pers-Kamczyc, E., Warzych, E., Murgia, I., and Apel, K. (2007) *Proc Natl Acad Sci U S A* **104**, 672-7.

Warning: This kit is only sold to end users. Neither resale nor transfer to a third party is allowed without written permission from AAT Bioquest. Chemical analysis of the kit components is strictly prohibited. Please call us at 408-733-1055 or e-mail us at info@aatbio.com if you have any questions.