Catalog Number: 100557

Structure:

Molecular Formula: C₈H₁₅N₃O₇

Molecular Weight: 265.2

CAS #: 18883-66-4

Synonyms: STZ; 2-Deoxy-2-(3-methyl-3-nitrosoureido)-D-glucopyranose

Physical Appearance: White to off-white solid

Solubility: Soluble in water (50 mg/ml - clear to slightly hazy, light yellow solution) and ethanol. Aqueous solutions rapidly undergo mutarotation to an equilibrium mixture of alpha- and beta-anomers. Maximum solution stability is at a pH of 4, with stability decreasing rapidly at higher or lower pH. Freshly prepared solutions are clear and have a light straw color; while solutions which have been standing for a period of time take on a yellow to brown color and effervesce, indicating decomposition.¹⁴ MP recommends to prepare solutions fresh for each use.

E^{mM}(228 nm): 6.36 (ethanol)

Description: A potent methylating agent for DNA.³ An N-nitroso-containing compound that acts as a nitric oxide donor in pancreatic islets; induces death of insulin-secreting cells, producing an animal model of diabetes. It does not cross the blood-brain barrier, but its metabolites are found in cerebral spinal fluid.¹² The antileukemic effects of streptozotocin and its analogs have been reported.⁴

Note: Approx. 75% alpha anomer

Typical Use: It is used mainly in the treatment of pancreatic (islet-cell) tumors.¹² Has been used in intravenous injections in rats at a dose of 65 mg/kg body weight to induce diabetes (using cold 0.1 M citrate buffer pH 4.5).⁹ In rats and dogs, diabetes was induced using intravenous dosage of 50 mg/kg body weight (using 1-2% w/v solutions in saline buffered with citrate dextrose solution at pH 5.0).¹⁴ It has been used for the treatment of malignant insulinoma; assays for the drug have been developed.²

The biological half-life in cell culture medium was shown to be approximately 19 minutes.¹¹

References:

- 1. Mercl Index, 12th Ed, No. 8991.
- 2. Drug Dosage in Laboratory Animals: A Handbook, 3rd Ed., Borchard, R.E., et al. (eds.), CRC Press (1992).
- 3. Bennett, R.A. and Pegg, A.E., "Alkylation of DNA in rat tissues following administration of streptozotocin." *Cancer Res.*, v.41, 2786 (1981).
- 4. Bhuyan, B.K., et al., Cancer Chemother. Reports, Part 1, v. 45(6), 709-720 (1972).
- 5. Bolzan, A.D., Bianchi, N.O. and Bianchi, M.S., "Effects of antioxidants on streptozotocin-induced clastogenesis in mammalian and insect cells." *Mutation Research/Genetic Toxicology and Environmental Mutagenesis*, v. 418(1), 35-42 (1998).
- 6. Bolzan, A.D. and Bianchi, M.S., "Chromosomal response of human lymphocytes to streptozotocin." *Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis*, v. 503(1-2), 63-68 (2002).
- Bolzan, A.D. and Bianchi, M.S., "Genotoxicity of Streptozotocin." *Mutation Research/Reviews in Mutation Research*, v. 512(2-3), 121-134 (2002).
- 8. Bolzan, A.D., Gonzales, M.C. and Bianchi, M.S., "The effect of 1,10-phenanthroline on the chromosome damage and sisterchromatid exchanges induced by streptozotocin in mammalian and insect cells." *Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis*, v. 447(2), 221-226 (2000).
- 9. Burcelin, R., et al., *Biochem. J.*, v. 291, 109-113 (1993).
- 10. Cheng, C.C. and Zee-Cheng, K.-Y., J. Pharmaceutical Sci., v. 61, 485-501 (1972).
- 11. Jensen, E.M., et al., *J. Natl. Cancer Inst.*, **v. 59**, 941-944 (1977).
- 12. Martindale: The Extra Pharmacopoeia, 29th Ed., Pharmaceutical Press, p. 649 (1989).
- 13. Oles, P.J., *J. Pharmaceutical Sci.*, **v. 67(9)**, 1300 (1978).
- 14. Rakieten, N., et al., Cancer Chemother. Reports., No. 29, 91-98 (1963).