

Bac-to-Bac[®] Baculovirus Expression System

An efficient site-specific transposition system to generate baculovirus for high-level expression of recombinant proteins

Catalog nos. 10359-016, 10360-014, 10584-027, 10712-024

Version F 04 September 2010 10359

User Manual

Table of Contents

Kit Contents and Storage	v
Accessory Products	vii
Introduction	1
Overview	1
The Bac-to-Bac [®] Baculovirus Expression System	
Experimental Outline	7
Culturing Insect Cells	8
General Guidelines	
Generating the Recombinant pFastBac [™] Vector	10
General Information	
Cloning into pFastBac [™] 1	
Cloning into pFastBac™HT A, B, and C	
Cloning into pFastBac [™] Dual	
Transformation and Analysis	
Generating the Recombinant Bacmid	
Transforming DH10Bac ^{TM} E. coli	
Isolating Recombinant Bacmid DNA	
Analyzing Recombinant Bacmid DNA by PCR	
Producing Recombinant Baculovirus	
Transfecting Insect Cells	
Isolating P1 Viral Stock	
Amplifying Your Baculoviral Stock	
Performing a Viral Plaque Assay	
Expressing Your Recombinant Protein	
Troubleshooting	
Appendix	
Recipes	
Bacmid DNA Isolation Using PureLink™ HiPure Maxiprep Kit	
Map and Features of pFastBac [™] 1	
Map and Features of pFastBac [™] HT	
Map and Features of pFastBac [™] Dual	
Map of pFastBac [™] -Gus	
Map of pFastBac™HT-CAT	
Map of pFastBac [™] Dual-Gus/CAT	
Technical Support	
Purchaser Notification	
References	

Kit Contents and Storage

Types of Products This manual is supplied with the products listed below. For a list of the reagents supplied with each catalog number, see below and the next page.

Product	Quantity	Cat. no.
Bac-to-Bac [®] Baculovirus Expression System	1 kit	10359-016
Bac-to-Bac® Vector Kit	1 kit	10360-014
Bac-to-Bac® HT Vector Kit	1 kit	10584-027
pFastBac™ Dual Vector Kit	1 kit	10712-024

Kit Components

Each catalog number contains the components listed below. **Important:** Note that catalog numbers 10360-014, 10584-027, and 10712-024 contain pFastBac[™] vectors **only**. See the next page for a detailed description about the specific pFastBac[™] vector and other reagents supplied with each catalog number.

Component	Cat. no. 10359-016	Cat. no. 10360-014	Cat. no. 10584-027	Cat. no. 10712-024
pFastBac [™] Vectors	\checkmark	\checkmark	\checkmark	\checkmark
MAX Efficiency [®] DH10Bac [™] Competent <i>E. coli</i>	\checkmark			
Cellfectin [®] II Reagent	\checkmark			

Shipping/Storage The Bac-to-Bac[®] Baculovirus Expression System is shipped in three boxes as described below. **Upon receipt, store each box as detailed below**. All reagents are guaranteed for six months if stored properly.

Box	Item	Shipping	Storage
1	pFastBac [™] Vectors	Blue ice	4°C
2	MAX Efficiency [®] DH10Bac [™] Competent E. coli	Dry ice	-80°C
3	Cellfectin [®] II Reagent	Blue ice	4°C

Vector Kits Cat. nos. 10360-014, 10584-027, and 10712-024 are shipped on blue ice. Upon receipt, store the vectors at 4°C.

Kit Contents and Storage, continued

pFastBac[™] Vectors

Each catalog number includes a specific pFastBac[™] vector(s) and a corresponding expression control, and are supplied as detailed below. **Store at 4°C.**

Product	Cat. no.	pFastBac [™] Vector	Expression Control
Bac-to-Bac® Baculovirus	10359-016	pFastBac™1	pFastBac [™] -Gus
Expression System		Supplied: 20 μl at 0.5 μg/μl in TE, pH 8.0* (10 μg total)	Supplied: 20 μ l at 0.2 ng/ μ l in TE, pH 8.0 (4 ng total)
Bac-to-Bac® Vector Kit	10360-014	pFastBac [™] 1	pFastBac [™] -Gus
		Supplied: 20 μl at 0.5 μg/μl in TE, pH 8.0 (10 μg total)	Supplied: 20 μ l at 0.2 ng/ μ l in TE, pH 8.0 (4 ng total)
Bac-to-Bac® HT Vector Kit	10584-027	pFastBac™HT A	pFastBac™HT-CAT
		pFastBac™HT B	Supplied: 15 μ l at 1 ng/ μ l in
		pFastBac™HT C	TE, pH 8.0 (15 ng total)
		Supplied: 20 μl each at 0.5 μg/μl in TE, pH 8.0 (10 μg total of each vector)	
pFastBac [™] Dual	10712-024	pFastBac™ Dual	pFastBac [™] Dual-Gus/CAT
*TE buffer, pH 8.0: 10 mM T		Supplied: 20 μl at 0.5 μg/μl in TE, pH 8.0 (10 μg total)	Supplied: 20 μl at 0.2 ng/μl in TE, pH 8.0 (4 ng total)

TE buffer, pH 8.0: 10 mM Tris-HCl, 1 mM EDTA, pH 8.0.

MAX Efficiency[®] DH10Bac[™] Competent *E. coli* Reagents

MAX Efficiency[®] DH10BacTM Chemically Competent *E. coli* are supplied with the Bac-to-Bac[®] Baculovirus Expression System **only**, and include the following items. Transformation efficiency is 1×10^8 cfu/µg DNA. **Store at -80°C.**

Item	Composition	Amount
MAX Efficiency [®] Chemically Competent DH10Bac™		$5 \times 100 \ \mu l$
pUC19 Control DNA	10 pg/μl in 5 mM Tris-HCl, 0.5 mM EDTA, pH 8	100 µl

Genotype of
DH10BacTM $F^- mcrA \Delta(mrr-hsdRMS-mcrBC) \phi 80 lacZ\Delta M15 \Delta lacX74 recA1 endA1 araD139 \Delta(ara,
leu)7697 galU galK <math>\lambda^- rpsL nupG/bMON14272/pMON7124$

Cellfectin [®] II Reagent is supplied with the Bac-to-Bac [®] Baculovirus Expression System only .
Amount supplied: 1 ml
Composition: 1 mg/ml transfection reagent in membrane-filtered water
Storage conditions: 4°C

Accessory Products

Additional Products

All of the reagents supplied in the Bac-to-Bac[®] Baculovirus Expression System as well as other products suitable for use with the Bac-to-Bac[®] System are available separately from Invitrogen. Ordering information for these reagents is provided below.

Item	Quantity	Cat. no.
Bac-to-Bac® Vector Kit	1 kit	10360-014
Bac-to-Bac® HT Vector Kit	1 kit	10584-027
pFastBac™ Dual Vector Kit	1 kit	10712-024
Gateway [®] pDEST [™] 8 Vector	6 µg	11804-010
Gateway [®] pDEST [™] 10 Vector	6 µg	11806-015
Gateway [®] pDEST [™] 20 Vector	6 µg	11807-013
Bac-to-Bac [®] C-His TOPO [®] Expression System	1 kit	A11100
Bac-to-Bac [®] C-His TOPO [®] Cloning Kit	1 kit	A11098
Bac-to-Bac [®] N-His TOPO [®] Expression System	1 kit	A11101
Bac-to-Bac® N-His TOPO® Cloning Kit	1 kit	A11099
MAX Efficiency [®] DH10Bac [™] Competent E. coli	$5 \times 100 \ \mu l$	10361-012
One Shot® TOP10 Chemically Competent E. coli	$20 \times 50 \ \mu l$	C4040-03
One Shot [®] MAX Efficiency [®] DH10B [™] -T1 ^R Chemically Competent <i>E. coli</i>	20 × 50 μl	12331-013
MAX Efficiency [®] Stbl2 [™] Competent Cells	1 ml	10268-019
Cellfectin [®] II Reagent	1 ml	10362-100
Ampicillin Sodium Salt, irradiated	200 mg	11593-027
Kanamycin Sulfate (100X), liquid	100 ml	15160-054
Gentamicin Reagent Solution, liquid (50 mg/ml)	10 ml	15750-060
Bluo-gal	1 g	15519-028
Neutral Red, high purity	25 mg	N-3246
Isopropylthio-β-galactoside (IPTG)	1 g	15529-019
S.O.C. Medium	10×10 ml	15544-034
AcTEV [™] Protease	1,000 Units	12575-015
Platinum [®] Taq DNA Polymerase	100 reactions	10966-018
Platinum [®] Taq DNA Polymerase High Fidelity	100 reactions	11304-011
PCR SuperMix High Fidelity	100 reactions	10790-020
4% Agarose Gel	40 ml	18300-012
PureLink [™] Quick Gel Extraction System	1 kit	K2100-12
PureLink [™] HiPure Plasmid Miniprep Kit	25 preps 100 preps	K2100-02 K2100-03
PureLink [™] HiPure Plasmid Maxiprep Kit	10 preps 25 preps	K2100-06 K2100-07

Accessory Products, continued

Insect Cell Culture Products

A variety of insect cell lines and GIBCO[™] cell culture products are available from Invitrogen to facilitate baculovirus-mediated expression of your recombinant protein in insect cells. For more information about the insect cell lines and GIBCO[™] cell culture products, refer to our website (www.invitrogen.com) or contact Technical Support (see page 66).

Item	Quantity	Cat. no.
Sf9 Cells, SFM Adapted	1.5×10^7 cells	11496-015
Sf21 Cells, SFM Adapted	1.5×10^7 cells	11497-013
High Five [™] Cells	3×10^6 cells	B855-02
Mimic [™] Sf9 Insect Cells	1×10^7 cells	12552-014
Sf-900 II SFM	500 ml	10902-096
Sf-900™ III SFM	500 ml	12658-019
Sf-900 Medium (1.3X)	100 ml	10967-032
Express Five [®] SFM	1000 ml	10486-025
Grace's Insect Cell Culture Medium, Unsupplemented	500 ml	11595-030
Grace's Insect Cell Culture Medium, Supplemented	500 ml	11605-094
Grace's Insect Cell Culture Medium (2X)	100 ml	11667-037
Penicillin-Streptomycin	100 ml	15070-063
Pluronic [®] F-68, 10% (100X)	100 ml	24040-032

Note: Reagents are also available in other sizes.

PLURONIC[®] is a registered trademark of BASF Corporation

Purifying Recombinant Fusion Proteins

If you use the pFastBac[™] HT A, B, or C vector to express your gene of interest as a fusion with the 6×His tag, you may use Invitrogen's ProBond[™] or Ni-NTA resins to purify your recombinant fusion protein. See the table below for ordering information.

Item	Quantity	Cat. no.
ProBond [™] Nickel-chelating Resin	50 ml 150 ml	R801-01 R801-15
ProBond [™] Purification System	6 purifications	K850-01
Ni-NTA Agarose	10 ml 25 ml 100 ml	R901-01 R901-15 R901-10
Ni-NTA Purification System	6 purifications	K950-01

Introduction

Overview	
Introduction	The Bac-to-Bac [®] Baculovirus Expression System provides a rapid and efficient method to generate recombinant baculoviruses (Ciccarone <i>et al.</i> , 1997). This method was developed by researchers at Monsanto, and is based on site-specific transposition of an expression cassette into a baculovirus shuttle vector (bacmid) propagated in <i>E. coli</i> (Luckow <i>et al.</i> , 1993). The major components of the Bac-to-Bac [®] Baculovirus Expression System include:
	• A choice of pFastBac [™] donor plasmids that allow generation of an expression construct containing the gene of interest where expression of the gene of interest is controlled by a baculovirus-specific promoter.
	• An <i>E. coli</i> host strain, DH10Bac [™] , that contains a baculovirus shuttle vector (bacmid) and a helper plasmid, and allows generation of a recombinant bacmid following transposition of the pFastBac [™] expression construct.
	 A control expression plasmid containing the Gus and/or CAT gene that allows production of a recombinant baculovirus which, when used to infect insect cells, expresses β-glucuronidase and/or chloramphenicol acetyl- transferase.
Advantages of the Bac-to-Bac [®] Baculovirus Expression System	Using the Bac-to-Bac [®] Baculovirus Expression System to generate a recombinant baculovirus provides the following advantages over the traditional method using homologous recombination:
	• Requires less than 2 weeks to identify and purify a recombinant baculovirus as compared to the 4–6 weeks required to generate a recombinant baculovirus using homologous recombination
	• Reduces the need for multiple rounds of plaque purification as the recombinant virus DNA isolated from selected colonies is not mixed with parental, non-recombinant virus
	• Permits rapid and simultaneous isolation of multiple recombinant baculoviruses, and is suited for the expression of protein variants for structure/function studies

Overview, continued

Choosing a	A number of pFastBac [™] vectors are available for use with the Bac-to-Bac [®]
pFastBac [™] Vector	Baculovirus Expression System (see table below). Choose the vector that best suits
•	vour needs.

Vector	Features	Reference	
pFastBac™1	• Strong AcMNPV polyhedrin (P _H) promoter for high- level protein expression	(Anderson <i>et al.,</i> 1996)	
	Large multiple cloning site for simplified cloning		
pFastBac™HT	• Strong polyhedrin (P _H) promoter for high-level protein expression	(Polayes <i>et al.,</i> 1996)	
	• N-terminal 6×His tag for purification of recombinant fusion proteins using metal-chelating resin and a TEV protease cleavage site for removal of the 6×His tag following protein purification		
	• Vector supplied in 3 reading frames for simplified cloning		
pFastBac [™] Dual	• Two strong baculovirus promoters (P _H and p10) to allow simultaneous expression of two proteins	(Harris & Polayes, 1997)	
	• Two large multiple cloning sites for simplified cloning		

Bac-to-Bac[®] TOPO[®] Expression System

The Bac-to-Bac[®] TOPO[®] Expression System provides a rapid and highly effective method to generate recombinant baculoviruses by combining the ease of **blunt-end** TOPO[®] cloning with the efficiency of site-specific transposition technology of the Bac-to-Bac[®] System. The Bac-to-Bac[®] TOPO[®] Expression System is available separately from Invitrogen with a choice of pFastBac[™]/CT-TOPO[®] or pFastBac[™]/NT-TOPO[®] donor plasmids, which are also available separately as part of Bac-to-Bac[®] C-His TOPO[®] or Bac-to-Bac[®] N-His TOPO[®] Cloning Kits (see page vii for ordering information).

Overview, continued

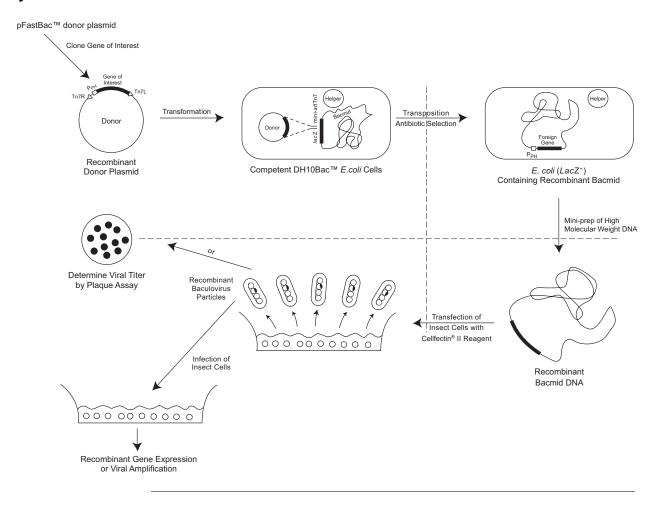
Purpose of This Manual	This manual provides an overview of the Bac-to-Bac [®] Baculovirus Expression System, and provides instructions and guidelines to:				
	1. Clone your gene of interest into the pFastBac [™] donor plasmid of choice.				
	 Transform the pFastBac[™] construct into MAX Efficiency[®] DH10Bac[™] competent <i>E. coli</i> to generate a recombinant bacmid. 				
	 Transfect the recombinant bacmid DNA into the insect cell line of choice to generate a recombinant baculovirus. 				
	4. Amplify and titer the baculoviral stock, and use this stock to infect insect cel to express your recombinant protein.				
Q Important	The Bac-to-Bac [®] Baculovirus Expression System is designed to help you create a recombinant baculovirus for high-level expression of your gene of interest in insect cells. Although the system has been designed to help you easily generate a baculovirus and express your recombinant protein of interest, use of the system is geared towards those users who are familiar with baculovirus biology and insect cell culture. We highly recommend that users possess a working knowledge of viral and tissue culture techniques. For more information about baculovirus biology, refer to published reference sources (King & Possee, 1992; Luckow, 1991; O'Reilly <i>et al.</i> , 1992). For more information about insect cell culture, refer to the <i>Guide to Baculovirus Expression</i>				
	<i>Vector Systems (BEVS) and Insect Cell Culture Techniques</i> for downloading on our website at www.invitrogen.com or by contacting Technical Support (see page 66).				

The Bac-to-Bac[®] Baculovirus Expression System

Components of the Bac-to-Bac[®] Baculovirus Expression System The Bac-to-Bac[®] Baculovirus Expression System facilitates rapid and efficient generation of recombinant baculoviruses (Ciccarone *et al.*, 1997). Based on a method developed by Luckow *et al.*, 1993, the Bac-to-Bac[®] Baculovirus Expression System takes advantage of the site-specific transposition properties of the Tn7 transposon to simplify and enhance the process of generating recombinant bacmid DNA.

- The first major component of the System is a pFastBac[™] vector into which the gene(s) of interest will be cloned. Depending on the pFastBac[™] vector selected, expression of the gene(s) of interest is controlled by the *Autographa californica* multiple nuclear polyhedrosis virus (AcMNPV) polyhedrin (P_H) or p10 promoter for high-level expression in insect cells. This expression cassette is flanked by the left and right arms of Tn7, and also contains a gentamicin resistance gene and an SV40 polyadenylation signal to form a mini Tn7.
- The second major component of the System is the DH10Bac[™] *E. coli* strain that is used as the host for your pFastBac[™] vector. DH10Bac[™] cells contain a baculovirus shuttle vector (bacmid) with a mini-*att*Tn7 target site and a helper plasmid (see the next page for details). Once the pFastBac[™] expression plasmid is transformed into DH10Bac[™] cells, transposition occurs between the mini-Tn7 element on the pFastBac[™] vector and the mini-*att*Tn7 target site on the bacmid to generate a recombinant bacmid. This transposition reaction occurs in the presence of transposition proteins supplied by the helper plasmid.

Once you have performed the transposition reaction, you will isolate the high molecular weight recombinant bacmid DNA and transfect the bacmid DNA into insect cells to generate a recombinant baculovirus that can be used for preliminary expression experiments. After the baculoviral stock is amplified and titered, this high-titer stock can be used to infect insect cells for large-scale expression of the recombinant protein of interest.


For a schematic representation of the Bac-to-Bac[®] Baculovirus Expression System, see the diagram on page 6.

The Bac-to-Bac[®] Baculovirus Expression System, continued

Baculovirus Shuttle Vector	The baculovirus shuttle vector (bacmid), bMON14272 (136 kb), present in DH10Bac [™] <i>E. coli</i> contains:				
	A low-copy number mini-F replicon				
	Kanamycin resistance marker				
	 A segment of DNA encoding the LacZα peptide from a pUC-based cloning vector into which the attachment site for the bacterial transposon, Tn7 (mini- <i>att</i>Tn7) has been inserted. Insertion of the mini-<i>att</i>Tn7 does not disrupt the reading frame of the LacZα peptide. 				
	The bacmid propagates in <i>E. coli</i> DH10Bac ^{\mathbb{M}} as a large plasmid that confers resistance to kanamycin and can complement a <i>lacZ</i> deletion present on the chromosome to form colonies that are blue (Lac ⁺) in the presence of a chromogenic substrate such as Bluo-gal or X-gal and the inducer, IPTG.				
	Recombinant bacmids (composite bacmids) are generated by transposing a mini- Tn7 element from a pFastBac [™] donor plasmid to the mini- <i>att</i> Tn7 attachment site on the bacmid. The Tn7 transposition functions are provided by a helper plasmid (see below).				
Helper Plasmid	DH10Bac [™] <i>E. coli</i> also contain the helper plasmid, pMON7124 (13.2 kb), which encodes the transposase and confers resistance to tetracycline. The helper plasmid provides the Tn7 transposition function <i>in trans</i> (Barry, 1988).				

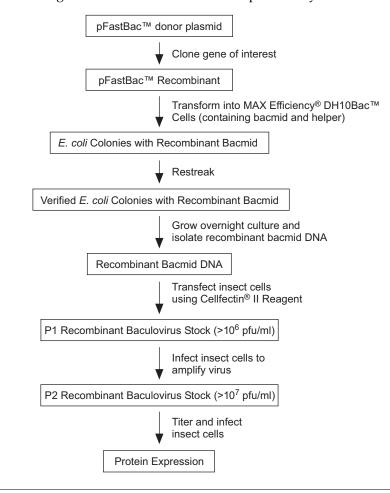

The Bac-to-Bac[®] Baculovirus Expression System, continued

Diagram of the Bac-to-Bac[®] System The figure below depicts the generation of recombinant baculovirus and the expression of your gene of interest using the Bac-to-Bac[®] Baculovirus Expression System.

Experimental Outline

Flow Chart The figure below illustrates the general steps required to express your gene of interest using the Bac-to-Bac[®] Baculovirus Expression System.

Culturing Insect Cells

General Guidelines

Introduction	We recommend using <i>Spodoptera frugiperda</i> Sf9 or Sf21 insect cells as the host for your baculovirus transfer vector. Before you start your transfection and expression experiments, be sure to have cultures of Sf9 or Sf21 cells growing and have frozen master stocks available. Sf9 and Sf21 cells and cell culture reagents are available separately from Invitrogen (see page viii for ordering information). Note: High Five [™] and Mimic [™] Sf9 insect cells are suitable for use for expression only.			
Using Serum-Free Medium	Insect cells may be cultured under serum-free conditions. We recommend using Sf-900 II SFM or Sf-900 [™] III SFM available from Invitrogen (see page viii for ordering information). Both Sf-900 II SFM and Sf-900 [™] III SFM are protein-free media optimized for the growth and maintenance of Sf9 and Sf21 cells, and for large-scale production of recombinant proteins expressed using the Bac-to-Bac [®] System. For more information, see our website (www.invitrogen.com) or call Technical Support (see page 66).			
Insect Cell Culture Reference Guide	For guidelines and detailed information on insect cell culture, refer to the <i>Guide to Baculovirus Expression Vector Systems (BEVS) and Insect Cell Culture Techniques</i> . This guide is available on our website at www.invitrogen.com or by contacting Technical Support (see page 66), and contains information on:			
	• Maintaining and passaging insect cells in adherent and suspension culture			
	Freezing cells			
	 Using serum-free medium (includes protocols to adapt cells to serum-free medium) 			
	Scaling up cell culture			
	Continued on most mass			

General Guidelines, continued

General Guidelines	Insect cells are very sensitive to environmental factors. In addition to chemical and nutritional culture factors, physical factors can also affect insect cell growth, and optimization is required to maximize cell growth. Consider the following when culturing insect cells:				
	• Temperature: The optimal range to grow and infect cultured insect cells is 27°C to 28°C.				
	• pH: A range of 6.1 to 6.4 works well for most culture systems. Sf-900 II SFM will maintain a pH in this range under conditions of normal air and open-capped culture systems.				
	• Osmolality: The optimal osmolality of medium for use with lepidopteran cell lines is 345 to 380 mOsm/kg.				
	• Aeration: Insect cells require passive oxygen diffusion for optimal growth and recombinant protein expression. Active or controlled oxygenated system require dissolved oxygen at 10% to 50% of air saturation.				
	• Shear Forces: Suspension culture generates mechanical shear forces. Growing insect cells in serum-containing media (10% to 20% FBS) generally provides adequate protection from cellular shear forces. If you are growing insect cells in serum-free conditions, supplementation with a shear force protectant such as PLURONIC [®] F-68 may be required.				
	Note: Growing cells in Sf-900 II SFM does not require addition of shear force protectants.				
Cells for Transfection	You will need log-phase cells with >95% viability to perform a successful transfection. Refer to page 30 to determine how many cells you will need for transfection.				

Generating the Recombinant pFastBac[™] Vector

General Information

Introduction	To generate a recombinant plasmid containing your gene(s) of interest for use in the Bac-to-Bac [®] Baculovirus Expression System, you will use restriction enzyme digestion and ligation to clone your gene(s) into one of the pFastBac [™] vectors. For recommendations and guidelines to help you design your cloning strategy, refer to the appropriate section on pages 11–17 depending on the pFastBac [™] vector you are using.					
General Molecular Biology Techniques	For help with restriction enzyme digestion, ligation, DNA sequencing, and other general molecular biology techniques, refer to <i>Molecular Cloning: A Laboratory Manual</i> (Sambrook <i>et al.</i> , 1989) or <i>Current Protocols in Molecular Biology</i> (Ausubel <i>et al.</i> , 1994).					
Propagation and Maintenance of Plasmids	The pFastBac [™] vectors and their corresponding expression control plasmids contain the ampicillin resistance gene to allow for selection in <i>E. coli</i> using ampicillin. To propagate and maintain the pFastBac [™] vectors and the pFastBac [™] control plasmids, use the following procedure:					
	1. Use the stock solution of vector provided to transform a <i>recA</i> , <i>endA E</i> . <i>coli</i> strain such as TOP10, DH10B [™] , or DH5α [™] (see page 18 for more information)					
	2. Select transformants on LB agar plates containing $100 \mu g/ml$ ampicillin.					
	 Prepare a glycerol stock from each transformant containing plasmid for long term storage (see page 19). 					

Cloning into pFastBac[™]1

Introduction	To help you design a strategy to clone your gene of interest into pFastBac [™] 1, s the recommendations and diagram below.							
Cloning Considerations	ve	The pFastBac [™] 1 vector is a non-fusion vector (<i>i.e.,</i> no fusion tags are present in the vector). To ensure proper expression of your recombinant protein, your insert must contain:						
	•	An ATG start o	odon for initia	ation of translat	ion			
	•	A stop codon f	or terminatior	of the gene				
	No	te: Stop codons ar		0	g site in all three	reading frames.		
Note t F C t S V Multiple Cloning E Site of j pFastBac [™] 1 s		The production of recombinant proteins requires that your insert contain a translation initiation ATG. Generally, transfer vectors that contain intact polyhedrin (P _H) leader sequences (<i>e.g.</i> , pFastBac [™] vectors) may yield higher levels of expression than vectors that contain interrupted leader sequences. Protein translation can initiate at the mutated ATG (ATT) upstream of the multiple cloning site; however, initiation from this site is inefficient and generally does not interfere with expression and detection of recombinant protein. Below is the multiple cloning site for pFastBac [™] 1. Restriction sites are labeled to indicate the actual cleavage site. Potential stop codons are underlined. The vector sequence of pFastBac [™] 1 is available for downloading from our website (www.invitrogen.com) or by contacting Technical Support (see page 66). For a map						
			Polyh	drin promotor		Start of Transcription		
	3901	TAGATCATGG		AATGATAACC	ATCTCGCAAA	ТАААТААСТА		
						d-type ATG mutated to ATT		
	3951	TTTTACTGTT	TTCGTAACAG	TTTTGTAATA	AAAAAACCTA Bam H I Rsr II			
	4001			CCATCGGGCG	I	I		
	4001							
	4051	<i>Eco</i> R I I GCGGAATTCA	I.	Sal I Ss I TCGACGAGCT	I Í I	ot I Nsp V I I GGCCGCTTTC		
		Xba I	Pst I Xho	I Sph	Kpn I Hind III			
	4101	GAATC <u>TAG</u> AG	CCTGCAGTCT	CGAGGCATGC	GGTACCAAGC	TTGTCGAGAA		
				SV40 pol	yadenylation signa	l		
	4151	gtac <u>tag</u> agg	ATCA <u>TAA</u> TCA	GCCATACCAC	ATTTGTAGAG	GTTTTACTTG		

Cloning into pFastBac[™]HT A, B, and C

Introduction	The pFastBac [™] HT vector is supplied with the multiple cloning site in three reading frames (A, B, and C) to facilitate cloning your gene of interest in frame with the N-terminal 6×His tag. See the recommendations below and the diagrams on pages 13–15 to help you design a cloning strategy.
Cloning Considerations	The pFastBac [™] HT vectors are fusion vectors. To ensure proper expression of your recombinant protein, you must:
	• Clone your gene in frame with the initiation ATG at base pairs 4050–4052. This will create a fusion with the N-terminal 6×His tag and a cleavage site for the AcTEV [™] Protease.
	Include a stop codon with your insert
Note	Generally, transfer vectors that contain intact polyhedrin (P_H) leader sequences (<i>e.g.</i> , pFastBac ^{M} vectors) may yield higher levels of expression than vectors that contain interrupted leader sequences. Protein translation can initiate at the mutated ATG (ATT) upstream of the multiple cloning site; however, initiation from this site is inefficient and generally does not interfere with expression and detection of recombinant protein.

Cloning into pFastBac[™]HT A, B, and C, continued

Multiple Cloning Site of pFastBac[™]HT A

Below is the multiple cloning site for pFastBac[™]HT A. The initiation ATG is indicated in bold. Restriction sites are labeled to indicate the actual cleavage site. The vector sequence of pFastBac[™]HT A is available for downloading from our website (www.invitrogen.com) or by contacting Technical Support (see page 66). For a map and a description of the features of pFastBac[™]HT, refer to the **Appendix**, pages 59–60.

		Polyhedrin promoter		Start of Transcription
3901	TAGATCATGG AGATA		C ATCTCGCAAA TAA	
			wild-type	ATG mutated to ATT
3951	TTTTACTGTT TTCGT	AACAG TTTTGTAATA	А ААААААССТА ТАА.	ATATTCC
4001	GGATTATTCA TACCG	TCCCA CCATCGGGCC	G CGGATCTCGG TCC	GAAACC
		6xHis tag		
4050	ATG TCG TAC TAC			
	Met Ser Tyr Tyr			-
		TEV recognition site	Ehe Nco Ban	7 H I
4092	CCA ACG ACC GAA Pro Thr Thr Glu			
		-	TEV cleavage site	-
	EcoR I Stu I	Sal I	Sst Spe	Not I
4134	GAA TTC AAA GGC			
	Glu Phe Lys Gly	Leu Arg Arg Arg	Ala Glu Leu Val	Arg Pro
	Nsp V Xba I	Pst XI	nol Sphl	Kpn I Hind III
4176	CTT TCG AAT CTA			
	Leu Ser Asp Leu	GIU Pro Ala Val	5	
			SV40 polyadenylation	<u> </u>
4218	AGC TTG TCG AGA Ser Leu Ser Arg			A'I'ACCAC
	5			

Cloning into pFastBac[™]HT A, B, and C, continued

Multiple Cloning Site of pFastBac [™] HT B	Below is the multiple cloning site for pFastBac [™] HT B. The initiation ATG is indicated in bold. Restriction sites are labeled to indicate the actual cleavage site. The boxed nucleotide indicates the variable region. The vector sequence of pFastBac [™] HT B is available for downloading from our website (www.invitrogen.com) or by contacting Technical Support (see page 66). For a map and a description of the features of pFastBac [™] HT, refer to the Appendix , pages 59–60.					
		Polyhe	drin promoter	Start of Transcription ►		
3901	TAGATCATGG	AGATAATTAA	AATGATAACC ATCTCGCAAA	TAAATAAGTA		
			wild	d-type ATG mutated to ATT		
3951	TTTTACTGTT	TTCGTAACAG	ТТТТСТААТА ААААААССТА	TAAATATTCC		
4001	GGATTATTCA	TACCGTCCCA	CCATCGGGCG CGGATCTCGG	TCCGAAACC		
			6xHis tag			
4050			AC CAT CAC CAT CAC GAT .s His His His Asp			
		TE	/ recognition site Ehe Nco	I Bam H I		
4092	CCA ACG ACC Pro Thr Thr	GAA AAC CI Glu Asn Le	G TAT TTT CAG GGC GCC eu Tyr Phe Gln Gly Ala TEV cleavage	Met Gly Ser		
	EcoR I	Stu I	Sal I Sst I Spe I	Not I		
4134		AGG CCT AC	CG TCG ACG AGC TCA CTA ar Ser Thr Ser Ser Leu			
	Nsp V	Xba I	Pst Xho	Sph I Kpn I		
4176	Ala Phe Glu		CC TGC AGT CTC GAG GCA La Cys Ser Leu Glu Ala			
	Hind III I		SV40 polyadeny	ylation signal		
4218	AAG CTT GTC Lys Leu Val	GAG AAG TA Glu Lys Ty		GCCATACCA		

Cloning into pFastBac[™]HT A, B, and C, continued

Multiple Cloning Site of pFastBac [™] HT C	 Below is the multiple cloning site for pFastBac[™]HT C. The initiation ATG is indicated in bold. Restriction sites are labeled to indicate the actual cleavage site. The boxed nucleotide indicates the variable region. The vector sequence of pFastBac[™]HT C is available for downloading from our website (www.invitrogen.com) or by contacting Technical Support (see page 66). For a map and a description of the features of pFastBac[™]HT, refer to the Appendix, pages 61–62. Note: In pFastBac[™]HT C, there is a stop codon within the <i>Xba</i> I site that is in frame with the 					
	N-terminal tag. Make sure that the 5' end of your gene is cloned upstream of the Xba I site.					
	Start of Transcription					
3901	TAGATCATGG AGATAATTAA AATGATAACC ATCTCGCAAA TAAATAAGTA					
2051						
3951	TTTTACTGTT TTCGTAACAG TTTTGTAATA AAAAAACCTA TAAATATTCC					
4001	GGATTATTCA TACCGTCCCA CCATCGGGCG CGGATCTCGG TCCGAAACC					
	6xHis tag					
4050	ATG TCG TAC TAC CAT CAC CAT CAC CAT CAC GAT TAC GAT ATC Met Ser Tyr Tyr His His His His His Asp Tyr Asp Ile					
	TEV recognition site Ehe Nco Bam H I					
4092	CCA ACG ACC GAA AAC CTG TAT TTT CAG GGC GCC ATG GGG ATC Pro Thr Thr Glu Asn Leu Tyr Phe Gln⊾Gly Ala Met Gly Ile					
	TEV cleavage site					
	EcoR I Stu I Sal I Sst I Spe I Not I I </th					
4134	CGG AAT TCA AAG GCC TAC GTC GAC GAG CTC ACT AGT CGC GGC Arg Asn Ser Lys Ala Tyr Val Asp Glu Leu Thr Ser Arg Gly					
	Nsp V Xba I Pst I Xho I Sph I Kpn I Hind III					
4176	CGC TTT CGA ATC TAG AGCCTGCAGT CTCGAGGCAT GCGGTACCAA Arg Phe Arg Ile ***					
	SV40 polyadenylation signal					
4221	GCTTGTCGAG AAGTACTAGA GGATCATAAT CAGCCATACC					

Cloning into pFastBac[™] Dual

Introduction	of two one by	astBac™ Dual ve heterologous ge the p10 promot t into pFastBac™	enes; one contro er. To help you	olled by the pol 1 design a strate	yhedrin (P _H) pr egy to clone you	romoter a ur genes (and of
Cloning Considerations		astBac™ Dual ve ecombinant prot				expressi	ion of
	• Ar	ATG start code	on for initiation	of translation			
		stop codon for to dons provided i			lon't use one o	f the stop)
Note Note Multiple Cloning Site Downstream of the PH Promoter	transla leader vectors the pol ATG (<i>i</i> interfe Below pFastB Potent availab	e production of recombinant proteins requires that your insert contain a nalation initiation ATG. Generally, transfer vectors that contain intact polyhedrir der sequences (<i>e.g.</i> , pFastBac [™] vectors) may yield higher levels of expression that tors that contain interrupted leader sequences. For inserts cloned downstream of polyhedrin promoter, note that protein translation can initiate at the mutated G (ATT); however, initiation from this site is inefficient and generally does not erfere with expression and detection of recombinant protein.					
			Polvhe	drin promoter		art of anscription	
	4481	ATGGAGATAA		AACCATCTCG	CAAATAAATA wild-type ATG		
	4531	TGTTTTCGTA	ACAGTTTTGT	ААТАААААА	ССТАТАААТА	TTCCGG	ATTA
				Bam H I	Rsr II	BssH II	EcoR I
	4581	TTCATACCGT	CCCACCATCG	GGCGCGGATC	CCGGTCCGAA	GCGCGC	GGAA
		Stu I	Sal I	Sst Spe	Not I	Nsp V	Xba I
	4631	I TTCAAAGGCC	I TACGTCGACG	AGCTCACTAG	I TCGCGGCCGC	I TTTCGA	ATC <u>T</u>
		Ps	tl <i>Hin</i> dl	Ш			
	4681	<u>ag</u> agcctgca	GTCTCGACAA	GCTTGTCGAG	AAGTAC <u>TAG</u> A	GGATCA	TAAT
	SV40 polyadenylation signal						
	4731	CAGCCATACC		AGGTTTTACT		AACCTC	CCAC

Cloning into pFastBac[™] Dual, continued

Multiple Cloning Site Downstream of the p10 Promoter

Below is the multiple cloning site located downstream of the AcMNPV p10 promoter in pFastBac[™] Dual. Restriction sites are labeled to indicate the actual cleavage site. Potential stop codons are underlined. The vector sequence of pFastBac[™] Dual is available for downloading from our website (www.invitrogen.com) or by contacting Technical Support (see page 66). For a map and a description of the features of pFastBac[™] Dual, refer to the **Appendix**, pages 61–62.

	p10 promoter	Start of Transcription
4460	TATACGGACC TTTAATTCAA CCCAACACAA TATATTATAG	TTAAATAAGA
4410	ATTATTATCA AATCATTTGT ATATTAATTA AAATACTATA Bbs II Sma I	CTGTAAATTA <i>Xho</i> I
4360	CATTTTATTT ACAATCACTC GACGAAGACT TGATCACCCG	GGATCTCGAG
4310		AGATGGGGGA
4260		CCGCGCTATG

Transformation and Analysis

Introduction	Once you have completed your ligation reactions, you are ready to transform your pFastBac [™] construct into <i>E. coli</i> . Many <i>E. coli</i> host strains and transformation procedures are suitable. General recommendations to transform <i>E. coli</i> and analyze transformants are provided in this section.			
<i>E. coli</i> Host	Once you have cloned your insert into one of the pFastBac TM vectors, you will transform the ligation reaction into <i>E. coli</i> and select for ampicillin-resistant transformants. You may use any <i>recA</i> , <i>endA E. coli</i> strain including TOP10, DH10B TM , or DH5 α^{TM} for transformation. Do not transform the ligation reaction into DH10BacTM cells.			
	Note: Chemically competent TOP10, DH10B TM , and DH5 α^{TM} <i>E. coli</i> are available from Invitrogen in a convenient One Shot [®] format (see table below).			
	Item	Quantity	Cat. no.	
	One Shot® TOP10 Chemically Competent E. coli	20 × 50 μl	C4040-03	
	One Shot [®] MAX Efficiency [®] DH10B [™] -T1 ^R Chemically Competent <i>E. coli</i>	$20 \times 50 \ \mu l$	12331-013	
	One Shot [®] MAX Efficiency [®] DH5 α^{TM} -T1 ^R Chemically Competent <i>E. coli</i>	20 × 50 μl	12297-016	
Transformation Method	You may use any method of choice to transform <i>E</i> the most convenient method, while electroporatio method of choice for large plasmids. To select for containing 100 μ g/ml ampicillin.	n is the most eff transformants, u	icient and Ise LB agar plates	
Analyzing Transformants	Once you have obtained ampicillin-resistant transformants, we recommend the following:			
	1. Pick 10 transformants and culture them overnight in LB or S.O.B. containing $100 \ \mu g/ml$ ampicillin.			
	2. Isolate the plasmid DNA using your method of choice. We recommend using the PureLink [™] HiPure Plasmid DNA Miniprep Kit to purify high quality plasmid DNA from your <i>E. coli</i> transformants (see page vii for ordering information).			
	3. Analyze the plasmids by restriction analysis to confirm the presence and correct orientation of the insert. Use a restriction enzyme or a combination of enzymes that cut once in the vector and once in the insert.			

Transformation and Analysis, continued

Analyzing Transformants by PCR	You may also analyze positive transformants using PCR. Use the appropriate PCR primers and amplification conditions for your insert. If you are using this technique for the first time, you may want to perform restriction analysis in parallel. Artifacts may be obtained because of mispriming or contaminating template. The protocol below is provided for your convenience. Other protocols are suitable.			
	Materials Needed:			
	PCR SuperMix High Fidelity (see page vii for ordering information)			
	Appropriate forward and reverse PCR primers (20 μ M each)			
	Procedure:			
	 For each sample, aliquot 48 µl of PCR SuperMix High Fidelity into a 0.5 ml microcentrifuge tube. Add 1 µl each of the forward and reverse PCR primer. 			
	 Pick 10 colonies and resuspend them individually in 50 µl of the PCR SuperMix containing primers (remember to make a patch plate to preserve the colonies for further analysis). 			
	3. Incubate reaction for 10 minutes at 94°C to lyse cells and inactivate nucleases.			
	4. Amplify for 20 to 30 cycles.			
	5. For the final extension, incubate at 72°C for 10 minutes. Store at 4°C.			
	6. Visualize by agarose gel electrophoresis.			
Sequencing	You may sequence your construct to confirm that your gene of interest is in the correct orientation for expression. If you have cloned your gene into one of the pFastBac [™] HT vectors, verify that your gene is cloned in frame with the N-terminal tag.			
Long-Term Storage	Once you have identified the correct clone, be sure to purify the colony and make a glycerol stock for long-term storage. We recommend that you store a stock of plasmid DNA at -20° C.			
	 Streak the original colony out for single colony on LB plates containing 100 μg/ml ampicillin. 			
	2. Isolate a single colony and inoculate into 1–2 ml of LB containing $100 \mu g/ml$ ampicillin.			
	3. Grow until culture reaches stationary phase.			
	4. Mix 0.85 ml of culture with 0.15 ml of sterile glycerol and transfer to a cryovial.			
	5. Store at -80° C.			

Generating the Recombinant Bacmid

Transforming DH10Bac[™] E. coli

Introduction Once you have generated your pFastBac [™] construct, you are ready to the purified plasmid DNA into DH10Bac [™] <i>E. coli</i> for transposition into the You will use blue/white selection to identify colonies containing the rebacmid. MAX Efficiency [®] DH10Bac [™] chemically competent cells are sup the Bac-to-Bac [®] Baculovirus Expression System, but are also available so from Invitrogen (see page vii). Guidelines and instructions to transform DH10Bac [™] cells are provided in this section.				
Positive Control	with a corresponding control plasmid for use sion control (see table below). Depending on we recommend including the corresponding transformation experiment (see table below). atures of each control plasmid, see the			
	pFastBac [™] Vector	Control Plasmid		
	pFastBac [™] 1	pFastBac [™] -Gus		
	pFastBac™HT	pFastBac [™] HT-CAT		
	pFastBac™ Dual	pFastBac™ Dual-Gus/CAT		

Transforming DH10Bac[™] *E. coli*, continued

Materials Needed	Have the following materials on hand before beginning:			
	• Your purified pFastBac [™] construct (200 pg/µl in TE, pH 8)			
	 Positive expression control (<i>i.e.</i>, pFastBac[™]-Gus, pFastBac[™]HT-CAT, or pFastBac[™] Dual-Gus/CAT; use as a control for transposition) 			
	• MAX Efficiency [®] DH10Bac [™] chemically competent cells (supplied with the Bac-to-Bac [®] Baculovirus Expression System; use 1 tube of competent cells for every transformation)			
	• pUC19 (supplied with the MAX Efficiency [®] DH10Bac [™] <i>E. coli</i> ; use as a control for transformation, if desired)			
	• LB agar plates containing kanamycin, gentamicin, tetracycline, Bluo-gal, and IPTG (3 plates for each transformation; use freshly prepared plates; see recommendation below)			
	 LB agar plate containing 100 µg/ml ampicillin (for plating pUC19 transformation control) 			
	• S.O.C. Medium (see page vii)			
	• 15 ml round-bottom polypropylene tubes			
	• 42°C water bath			
	• 37°C shaking and non-shaking incubator			
WME NO PATIENT	You will need to prepare LB agar plates containing 50 µg/ml kanamycin, 7 µg/ml gentamicin, 10 µg/ml tetracycline, 100 µg/ml Bluo-gal, and 40 µg/ml IPTG to select for DH10Bac [™] transformants. See page vii to order antibiotics, Bluo-gal, and IPTG, and page 53 for instructions to prepare plates. If you are preparing LB plates using a pre-mixed formulation, we recommend using Luria Broth Base instead of Lennox L (LB). Using Lennox L plates will reduce the color intensity and may reduce the number of colonies obtained. Note: Use Bluo-gal instead of X-gal for blue/white selection. Bluo-gal generally produces a darker blue color than X-gal.			
Preparing for Transformation	For each transformation, you will need one vial of competent cells and three selective plates.			

- Equilibrate a water bath to 42°C.
- Warm selective plates at 37°C for 30 minutes.
- Warm the S.O.C. Medium to room temperature.
- Pre-chill one 15 ml round-bottom polypropylene tube for each transformation.

Transforming DH10Bac[™] *E. coli*, continued

recombinant bacmid.

Transformation Procedure	Follow the procedure below to transform MAX Efficiency [®] DH10Bac ^{TM} chemically competent cells with your pFastBac ^{TM} construct. We recommend including positive controls for transposition (<i>i.e.</i> , pFastBac ^{TM} expression plasmid) and transformation (<i>i.e.</i> , pUC19) in your experiment to help you evaluate your results.
	1. Thaw on ice one vial of MAX Efficiency [®] DH10Bac [™] competent cells for each transformation.
	 For each transformation, gently mix and transfer 100 µl of the DH10Bac[™] cells into a pre-chilled, 15 ml round-bottom polypropylene tube.
	3. Add the appropriate amount of plasmid DNA to the cells and mix gently. Do not pipet up and down to mix.
	 Your pFastBac[™] construct: 1 ng (5 μl)
	 pFastBac[™] control plasmid: 1 ng
	• pUC19 control: 50 pg (5 μl)
	4. Incubate cells on ice for 30 minutes.
	5. Heat-shock the cells for 45 seconds at 42°C without shaking.
	6. Immediately transfer the tubes to ice and chill for 2 minutes.
	7. Add 900 μl of room temperature S.O.C. Medium.
	8. For pFastBac[™] transformations: Shake tubes at 37°C at 225 rpm for 4 hours.
	For pUC19 transformation: Shake tube at 37°C at 225 rpm for 1 hour.
	 9. For each pFastBac[™] transformation: Prepare 10-fold serial dilutions of the cells (10⁻¹, 10⁻², 10⁻³) with S.O.C. Medium. Plate 100 µl of each dilution on an LB agar plate containing 50 µg/ml kanamycin, 7 µg/ml gentamicin, 10 µg/ml tetracycline, 100 µg/ml Bluo-gal, and 40 µg/ml IPTG. For the pUC19 transformation: Dilute the cells 1:100 with S.O.C. Medium. Plate 100 µl of the dilution on an LB agar plate containing 100 µg/ml ampicillin.
	 Incubate plates for 48 hours at 37°C. Pick white colonies for analysis (see the next page for recommendations).
	Note: We do not recommend picking colonies earlier than 48 hours as it may be difficult to distinguish between white and blue colonies.
Important	Insertions of the mini-Tn7 into the mini- <i>att</i> Tn7 attachment site on the bacmid disrupt the expression of the LacZ α peptide, so colonies containing the recombinant bacmid are white in a background of blue colonies that harbor the unaltered bacmid. Select white colonies for analysis. True white colonies tend to be large; therefore, to avoid selecting false positives, choose the largest, most isolated white colonies. Avoid picking colonies that appear gray or are darker in the center as they can contain a mixture of cells with empty bacmid and

Transforming DH10Bac[™] *E. coli*, continued

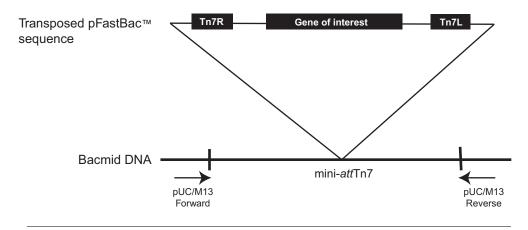
Verifying the Phenotype	1.	Pick 10 white colonies and restreak them on fresh LB agar plates containing 50 μ g/ml kanamycin, 7 μ g/ml gentamicin, 10 μ g/ml tetracycline, 100 μ g/ml Bluo-gal, and 40 μ g/ml IPTG. Incubate the plates overnight at 37°C.
	2.	From a single colony confirmed to have a white phenotype on restreaked plates containing Bluo-gal and IPTG, inoculate a liquid culture containing 50 μ g/ml kanamycin, 7 μ g/ml gentamicin, and 10 μ g/ml tetracycline.
	3.	Isolate recombinant bacmid DNA using the procedure provided on the next page for analysis. You may also use the procedure for the PureLink [™] HiPure Plasmid Maxiprep Kit provided in the Appendix , page 54, for increased recombinant bacmid yield.
	4.	Analyze the recombinant bacmid DNA to verify successful transposition to the bacmid. We recommend using PCR to analyze your bacmid DNA (see Analyzing Recombinant Bacmid DNA by PCR , page 26, for details).
		Note: It is possible to verify successful transposition to the bacmid by using agarose gel electrophoresis to look for the presence of high molecular weight DNA. This method is less reliable than performing PCR analysis as high molecular weight DNA can be difficult to visualize.

Isolating Recombinant Bacmid DNA

Introduction	The PureLink [™] HiPure Plasmid DNA Miniprep Kit allows you to purify high quality Bacmid DNA from DH10Bac [™] <i>E. coli</i> (see page vii for ordering information). The isolated bacmid DNA is suitable for use in insect cell transfections. Note : We do not recommend the PureLink [™] HiPure Precipitator Module or the PureLink [™] HiPure Plasmid Filter Mini/Midi/Maxiprep Kits for isolating bacmid DNA.
Before Starting	• Inoculate a single white bacterial colony into 2 ml LB medium with 50 μ g/ml kanamycin, 7 μ g/ml gentamicin, and 10 μ g/ml tetracycline. Incubate the culture at 37°C in a shaking water bath at 250 rpm overnight.
	• Verify that RNase A is added to the Resuspension Buffer (R3) and that the Lysis Buffer (L7) contains no precipitates.
Equilibrating the Column	Place the PureLink [™] HiPure Mini column on the PureLink [™] Nucleic Acid Purification Rack (see the manual supplied with the rack for more details). Apply 2 ml Equilibration Buffer (EQ1) to the column. Allow the solution in the column to drain by gravity flow.
Preparing the Cell Lysate	 Harvest 1.5 ml bacterial cells by centrifuging at 9,000 × g for 15 minutes. Remove all medium.
-	2. Add 0.4 ml Resuspension Buffer (R3) containing RNase A to the pellet and resuspend the cells until homogeneous. Transfer cell suspension to a centrifuge tube.
	3. Add 0.4 ml Lysis Buffer (L7). Mix gently by inverting the capped tube five times. Do not vortex. Incubate at room temperature for 5 minutes.
	4. Add 0.4 ml Precipitation Buffer (N3) and mix immediately by inverting the capped tube until the mixture is homogeneous. Do not vortex .
	5. Centrifuge the mixture at >15,000 \times g at room temperature for 10 minutes.
	Note : If the pellet does not adhere to the bottom of the tube, incubate the tube at room temperature for 5 minutes to allow the separation of the lysate and gelatinous pellet. Pipette the clear lysate into a sterile tube and centrifuge at >15,000 × g for 5 minutes at room temperature to remove any remaining cellular debris.
Binding and Washing the DNA	 Load the supernatant from Step 5 (see above) onto the equilibrated column. Allow the solution in the column to drain by gravity flow.
-	 Wash the column twice with 2.5 ml Wash Buffer (W8). Allow the solution in the column to drain by gravity flow after each wash. Discard the flow-through.

Isolating Recombinant Bacmid DNA, continued

Eluting and	1. Place a sterile centrifuge tube (elution tube) under the column.			
Precipitating DNA	Add 0.9 ml Elution Buffer (E4) to the column to elute DNA. Allow the solution to drain by gravity flow. Do not force out any remaining solution.			
	3. The elution tube contains the purified DNA. Discard the column.			
	 Add 0.63 ml isopropanol to the elution tube. Mix and place on ice for 10 minutes. 			
	5. Centrifuge the mixture at >15,000 \times g at 4°C for 20 minutes. Carefully remove and discard the supernatant.			
	6. Resuspend the DNA pellet in 1 ml 70% ethanol.			
	 Centrifuge at >15,000 × g at 4°C for 5 minutes. Carefully remove and discard the supernatant. 			
	8. Air-dry the pellet for 10 minutes.			
	 Resuspend the DNA pellet in 40 μl TE Buffer (TE). Allow pellet to dissolve for at least 10 minutes on ice. To avoid shearing the DNA, pipette only 1–2 times to resuspend. 			
	10. Store the bacmid DNA at 4°C (see Important below).			
Important	You may store your bacmid DNA at -20° C if you avoid frequent freeze/thaw cycles as it decreases the transfection efficiency. To store your purified bacmid DNA at -20° C, aliquot into separate tubes in TE Buffer, pH 8.0 to avoid more than one freeze/thaw cycle and do not store in a frost-free freezer. You may also store the purified bacmid DNA for up to 2 weeks at 4°C in TE Buffer, pH 8.0.			
	You may prepare glycerol stocks of DH10Bac [™] <i>E. coli</i> containing the bacmid DNA from mid-logarithmic phase culture grown from white colonies picked during the blue-white screening, and store at –80°C for future bacmid DNA isolation.			
Note	You may also use the procedure for PureLink [™] HiPure Plasmid Maxiprep Kit provided in the Appendi x, page 54, for increased recombinant bacmid yield.			


The PureLink[™] HiPure Plasmid Prep Kits, available separately from Invitrogen, allow the purification of all types and sizes of plasmid DNA, including BAC, bacmids, and ssM13 DNAs, and are ideally suited for bacmid purification (see page vii for ordering information).

Analyzing Recombinant Bacmid DNA by PCR

Introduction

Recombinant bacmid DNA is greater than 135 kb in size. Since restriction analysis is difficult to perform with DNA of this size, we recommend using PCR analysis to verify the presence of your gene of interest in the recombinant bacmid. Use the pUC/M13 Forward and Reverse primers (sequences given below) that hybridize to sites flanking the mini-*att*Tn7 site within the *lac*Z α -complementation region to facilitate PCR analysis (see figure below). Guidelines and instructions are provided in this section to perform PCR using the pUC/M13 Forward and Reverse primers.

PCR Analysis with pUC/M13 Primers

To verify the presence of your gene of interest in the recombinant bacmid using PCR, you may:

- Use the pUC/M13 Forward and Reverse primers (see sequences below).
- Use a combination of the pUC/M13 Forward or Reverse primer and a primer that hybridizes within your insert.

Invitrogen does not supply the pUC/M13 Forward and Reverse primers; you must have these primers custom synthesized.

Primer	Sequence
pUC/M13 Forward	5'-CCCAGTCACGACGTTGTAAAACG-3'
pUC/M13 Reverse	5'-AGCGGATAACAATTTCACACAGG-3'

DNA Polymerase

You may use any DNA polymerase of your choice for PCR including Platinum[®] *Taq* DNA Polymerase. If the expected PCR product is > 4 kb, we recommend using a polymerase mixture such as Platinum[®] *Taq* DNA Polymerase High Fidelity for best results (see page vii for ordering information).

Analyzing Recombinant Bacmid DNA by PCR, continued

Producing the PCR Product

Use the procedure below to amplify your recombinant bacmid DNA using the pUC/M13 Forward and Reverse primers and Platinum[®] *Taq* polymerase. If you are using a combination of the pUC/M13 Forward or Reverse primers primer and a primer specific for your gene, you will need to determine the amplification conditions to use. If you are using another polymerase, follow the manufacturer's recommendations for the polymerase you are using.

Note: Amplification conditions may need to be optimized if your insert is > 4 kb.

1. For each sample, set up the following 50 µl PCR reaction in a 0.5 ml microcentrifuge tube:

Recombinant bacmid DNA (100 ng)	1 µl
10X PCR Buffer (appropriate for enzyme)	5 µl
10 mM dNTP Mix	1 µl
50 mM MgCl ₂	1.5 µl
PCR Primers (1.25 µl each 10 µM stock)	2.5 µl
Sterile Water	38.5 µl
<u>Platinum[®] Taq polymerase (5 units/µl)</u>	0.5 μl
Total Volume	50 µl

2. Amplify using the following cycling parameters:

Step	Time	Temperature	Cycles
Initial Denaturation	3 minutes	93°C	1X
Denaturation	45 seconds	94°C	
Annealing	45 seconds	55°C	25–35X
Extension	5 minutes	72°C	
Final Extension	7 minutes	72°C	1X

3. Remove 5–10 µl from the reaction and analyze by agarose gel electrophoresis.

Analyzing Recombinant Bacmid DNA by PCR, continued

What You Should See

If transposition has occurred and you have used the pUC/M13 Forward and Reverse primers for amplification, you should see a PCR product of the following size on the agarose gel:

Sample	Size of PCR Product
Bacmid alone	~300 bp
Bacmid transposed with pFastBac [™] 1	~2300 bp + size of your insert
Bacmid transposed with pFastBac [™] -Gus	~4200 bp
Bacmid transposed with pFastBac [™] HT	~2430 bp + size of your insert
Bacmid transposed with pFastBac™HT-CAT	~3075 bp
Bacmid transposed with pFastBac [™] Dual	~2560 bp + size of your insert
Bacmid transposed with pFastBac [™] Dual-Gus/CAT	~5340 bp

If you have used a combination of the pUC/M13 Forward or Reverse primer and a gene-specific primer for amplification, you will need to determine the expected size of your PCR product. Refer to the diagram on page 26 to help you calculate the expected size of your PCR product.

Producing Recombinant Baculovirus

Transfecting Insect Cells

Introduction	Once you have confirmed that your recombinant bacmid contains the gene of interest, you are ready to transfect insect cells to produce recombinant baculovirus. Guidelines and instructions to transfect insect cells are provided in this section.
Plasmid Preparation	You may use any method to prepare purified recombinant bacmid DNA for transfection. Bacmid DNA must be clean and free from phenol and sodium chloride as contaminants may kill the cells, and salt will interfere with lipid complexing, decreasing transfection efficiency. We recommend isolating bacmid DNA using the PureLink [™] HiPure Plasmid Miniprep Kit (see page vii for ordering information) or the procedure provided in the Appendix , page 54.
Transfection Method	We recommend using a cationic lipid such as Cellfectin [®] II Reagent for transfection. Cellfectin [®] II Reagent is supplied with the Bac-to-Bac [®] Baculovirus Expression System and is available separately from Invitrogen (see page vii for ordering information).
Cellfectin [®] II Reagent	Cellfectin [®] II Reagent is a proprietary cationic lipid formulation that offers the highest transfection efficiencies and protein expression levels on the widest variety of adherent and suspension insect cell lines, including Sf9 and Sf21 cells.
Insect Cell Lines	We recommend using Sf9 or Sf21 cells for transfection and identification of recombinant plaques. High Five [™] and Mimic [™] Sf9 cells are not recommended because they generally transfect less efficiently. However, once you have generated your baculovirus stock, you may use High Five [™] or Mimic [™] Sf9 cells for expression studies.
Media for Transfection	For the highest transfection efficiency, we recommend performing the transfection in Grace's Insect Cell Culture Medium, Unsupplemented (see page viii). Note that the Grace's Insect Cell Culture Medium should not contain supplements or fetal bovine serum (FBS) as the supplements and the proteins in the FBS will interfere with the Cellfectin [®] II Reagent, inhibiting the transfection. Note: If you are culturing Sf9 or Sf21 cells in Sf-900 II SFM or Sf-900 [™] III SFM, you can perform the transfection in unsupplemented Grace's Medium, then easily switch back to Sf-900 II SFM or Sf-900 [™] III SFM after transfection.

Transfecting Insect Cells, continued

Positive Control	If you have generated a recombinant bacmid from one of the pFastBac TM control plasmids (<i>i.e.</i> , pFastBac TM -Gus, pFastBac TM HT-CAT, or pFastBac TM Dual-Gus/CAT), we recommend including this positive control in your transfection and expression experiments to help you evaluate your results. In these bacmids, the gene encoding β -glucuronidase (Gus) and/or chloramphenicol acetyltransferase (CAT) will be expressed under the control of the polyhedrin (P _H) or p10 promoter. After transfection, expression of β -glucuronidase or CAT may be assayed, as appropriate.		
Materials Needed	 Purified recombinant bacmid DNA (500 ng/µl in TE Buffer, pH 8.0) 	from your pFastBac [™] construct	
	• Purified recombinant bacmid DNA construct (if desired, 500 ng/µl in T	from the appropriate pFastBac [™] control E Buffer, pH 8.0)	
	• Sf9 or Sf21 cells cultured in the appr	ropriate medium	
	• Cellfectin [®] II Reagent (store at 4°C u	until use)	
	• Grace's Insect Cell Medium, Unsup not contain supplements, FBS, or a	plemented (see page viii), media should ntibiotics	
	• 6-well tissue culture plates and othe	er tissue culture supplies	
	• 1.5 ml sterile microcentrifuge tubes		
	 Complete growth medium for culturing insect cells (<i>e.g.</i>, Sf-900 II SFM, Sf-900[™] III SFM, TNM-FH, Grace's Supplemented Insect Cell Culture Medium, or other suitable medium) 		
	Calculate the number of Sf9 or Sf21 cells that you will need for your transfection experiment and expand cells accordingly. Make sure your cells are healthy with greater than 95% viability and are growing in the logarithmic phase with a density of 1.5×10^6 – 2.5×10^6 cells/ml before proceeding to transfection.		
Transfection Conditions	We generally produce baculoviral stocks in Sf9 or Sf21 cells using the following transfection conditions. Note that these conditions should be used as a starting point for your transfection. To obtain the highest transfection efficiency and low non-specific effects, you may optimize transfection conditions by varying DNA and Cellfectin [®] II Reagent concentrations, and cell density.		
	Condition	Amount	
	Tissue culture plate size	6-well (35 mm) plate (one well/bacmid)	
	Number of Sf9 or Sf21 cells to transfect	8×10^5 cells	
	Amount of bacmid DNA	$1 \ \mu g$ (can vary from 1 to 2 μg)	
	Amount of Cellfectin [®] II Reagent	8 μl (can vary from 1.5 to 9 μl)	

Note: This procedure is for insect cells in a 6-well format. All amounts and volumes are given on a per well basis.

Transfecting Insect Cells, continued

Important Guidelines for Transfection •	Use Grace's Insect Cell Culture Medium, Unsupplemented to seed all cells in plate for Sf9 and Sf21 cells grown in Grace's Insect Cell Culture Medium, Supplemented (with 10% FBS). With Cellfectin® II, you do not have to remove the medium from cells and wash cells prior to adding the DNA-lipid complex to cells. The DNA-lipid complex formation time is shorter (~15–30 minutes) when using Cellfectin® II as compared to Cellfectin® reagent. Do not add antibiotics during transfection as this causes cell death.
Procedure co tra ba	r Sf9 or Sf21 insect cells cultured in Supplemented Grace's Insect Medium ntaining 10%FBS, use the following protocol to prepare your cells for insfection in a 6-well format. All amounts and volumes are given on a per well sis. If you wish to transfect cells in other tissue culture formats, you will need to termine the optimal conditions to use.
1.	Verify that the Sf9 or Sf21 cells are in the log phase $(1.5-2.5 \times 10^6 \text{ cells/ml})$ with greater than 95% viability.
2.	If the cell density is in range of 1.5×10^6 – 2.5×10^6 cells/ml and the culture is without antibiotics, proceed to step 2a. If the cell density is not in this range or the cell culture contains antibiotics, follow steps 2b–2c:
	a. Add 2 ml of Grace's Insect Medium, Unsupplemented (without antibiotics and serum) in each well. Seed 8×10^5 Sf9 or Sf21 cells from Step 1 per well. Do not change medium or wash the cells. The medium carried over will enhance the transfection efficiency. Allow cells to attach for 15 minutes at room temperature in the hood. Proceed to step 3.
	b. Prepare 10ml plating medium by mixing 1.5 ml Supplemented Grace's Insect Medium containing 10%FBS (without antibiotics) and 8.5 ml Grace's Insect Medium, Unsupplemented (without FBS and antibiotics).
	 c. Plate 8 × 10⁵ Sf9 or Sf21 cells from Step 1 per well. Allow cells to attach for 15 minutes at room temperature in the hood. Remove the medium. Add 2.5 ml plating medium from step 2b per well. Proceed to step 3.
3.	For each transfection sample, prepare complexes as follows:
	a. Mix Cellfectin [®] II before use, and dilute 8 μl in 100 μl Grace's Medium, Unsupplemented (without antibiotics and serum). Vortex briefly to mix. Note : You may leave this mixture at room temperature for up to 30 minutes.
	 b. Dilute 1 µl baculovirus DNA in 100 µl Grace's Medium, Unsupplemented (without antibiotics and serum). Mix gently.
	c. Combine the diluted DNA with diluted Cellfectin [®] II (total volume ~210 µl). Mix gently and incubate for 15–30 minutes at room temperature.
4.	Add ~210 µl DNA-lipid mixture or transfection mixture (Step 3c) dropwise onto the cells from Step 2. Incubate cells at 27°C for 3–5 hours.
5.	Remove the transfection mixture and replace with 2 ml of complete growth medium (<i>e.g.,</i> Grace's Insect Medium, Supplemented and 10% FBS). Using antibiotics is optional.
6.	Incubate cells at 27°C for 72 hours or until you see signs of viral infection.

Isolating P1 Viral Stock

Introduction	Budded virus should be released into the medium 72 hours after transfection. However, if your transfection efficiency was not optimal, cells may not show all of the signs of viral infection until 4 or 5 days post-transfection. Beginning at 72 hours after transfection, you should visually inspect the cells daily for signs of infection (see below). Once the cells appear infected (<i>i.e.</i> , demonstrate chacteristics typical of late to very late infection), harvest the virus from the cell culture medium using the procedure below.

Characteristics of Infected Cells Virally-infected insect cells typically display the following characteristics as observed from visual inspection using an inverted phase microscope at 250–400X magnification. The time points provided below assume that the transfection was successful (*i.e.*, transfection efficiency was high).

Signs of Infection	Phenotype	Description
Early (first 24 hours)	Increased cell diameter	A 25–50% increase in cell diameter may be seen.
	Increased size of cell nuclei	Nuclei may appear to "fill" the cells.
Late (24–72 hours)	Cessation of cell growth	Cells appear to stop growing when compared to a cell-only control.
	Granular appearance	Signs of viral budding; vesicular appearance to cells.
	Detachment	Cells release from the plate or flask.
Very Late (>72 hours)	Cell lysis	Cells appear lysed, and show signs of clearing in the monolayer.

Preparing the P1 Viral Stock

- 1. Once the transfected cells from Step 6, previous page demonstrate signs of late stage infection (*e.g.*, 72 hours post-transfection), collect the medium containing virus from each well (~2 ml) and transfer to sterile 15 ml snap-cap tubes. Centrifuge the tubes at $500 \times g$ for 5 minutes to remove cells and large debris.
- 2. Transfer the clarified supernatant to fresh 15 ml snap-cap tubes. **This is the P1 viral stock**. Store at 4°C, protected from light. See the next page for additional storage information.

Note: If you wish to concentrate your viral stock to obtain a higher titer, you may filter your viral supernatant through a $0.2 \mu m$, low protein binding filter after the low-speed centrifugation step, if desired.

Isolating P1 Viral Stock, continued

Storing Viral Stocks	Store viral stocks as follows:
	• Store viral stock at 4°C, protected from light.
	• If medium is serum-free (<i>e.g.</i> , Sf-900 II SFM, Sf-900 [™] III SFM), add fetal bovine serum to a final concentration of 2%. Serum proteins act as substrates for proteases.
	• For long-term storage, store an aliquot of the viral stock at –80°C for later reamplification.
	• Do not store routinely used viral stocks at temperatures below 4°C. Repeated freeze/thaw cycles can result in a 10- to 100-fold decrease in virus titer.
The Next Step	Once you have obtained your clarified P1 baculoviral stock, you may:
	• Amplify the viral stock (see the next section for details). This procedure is recommended to obtain the highest viral titers and optimal results in your expression studies.
	• Determine the titer of your viral stock (see Performing a Viral Plaque Assay , page 36).
	• Plaque purify your recombinant baculovirus, if desired (see Performing a Viral Plaque Assay , page 36).
	• Use the P1 viral stock to infect Sf9 or Sf21 cells for preliminary expression experiments (see below).
Note	If you wish to perform small-scale or preliminary expression experiments, it is possible to proceed directly to expression studies by using the P1 viral stock to

infect your Sf9 or Sf21 cells. Note that the amount of viral stock is limited and expression conditions may not be reproducible (*i.e.*, MOI is unknown if titer is not determined).

Amplifying Your Baculoviral Stock

Introduction	The P1 viral stock is a small-scale, low-titer stock. You may use this stock to infect cells to generate a high-titer P2 stock. The titer of the initial viral stock obtained from transfecting Sf9 or Sf21 cells generally ranges from 1×10^6 to 1×10^7 plaque forming units (pfu)/ml. Amplification allows production of a P2 viral stock with a titer ranging from 1×10^7 to 1×10^8 pfu/ml and is generally recommended. Guidelines and protocols are provided in this section to amplify the recombinant baculovirus to prepare a P2 viral stock.
Materials Needed	You should have the following materials on hand before beginning:
	• Sf9 or Sf21 cells cultured in the appropriate growth medium
	P1 baculoviral stock
	• Any appropriate tissue culture vessel (see Important Note below)
	Tissue culture reagents
	• 27°C humidified incubator
Q Important	To amplify your P1 viral stock, you may infect Sf9 or Sf21 cells growing in suspension or monolayer culture. Depending on your needs, you may amplify your P1 viral stock at any scale, but remember that you may be limited by the amount of P1 viral stock available. We generally amplify our P1 viral stock in a 10 ml suspension culture at 2×10^6 cells/ml or in 6-well tissue culture plates at 2×10^6 cells/well. Calculate the number of Sf9 or Sf21 cells that you will need for infection and expand cells accordingly. Make sure that the cells are healthy, of low passage (5–20), and have >95% viability before proceeding to infection.
Multiplicity of Infection (MOI)	To amplify your viral stock, infect cells at a multiplicity of infection (MOI) ranging from 0.05 to 0.1. MOI is defined as the number of virus particles per cell. Use the following formula to calculate how much viral stock to add to obtain a specific MOI:
	Inoculum required (ml) = $(\frac{MOI(pfu/cell) \times number of cells}{titer of viral stock(pfu/ml)})$
	Note: If you have not determined the titer of your P1 viral stock, you may assume that the titer ranges from 1×10^6 to 1×10^7 pfu/ml.
Example	We wish to infect a 10 ml culture at 2×10^6 cells/ml using an MOI = 0.1. We assume that the titer of our P1 viral stock is 5×10^6 pfu/ml.
	Inoculum required (ml) = $\left(\frac{0.1 \text{ pfu/cell } 2 \times 10^7 \text{ cells}}{5 \times 10^6 \text{ pfu/ml}}\right)$
	Inoculum required (ml) = 0.4 ml

Amplifying Your Baculoviral Stock, continued

Important considerations	For successful amplification of your baculovirus, you should pay attention to several key points:		
	• Use Sf9 or Sf21 cells that are in excellent health, low passage (5–20), log-phase growth, and have >95% viability		
	• Use sterile P1 baculoviral stock that is free of contaminants		
	• Use a low MOI between 0.05–0.1 as higher MOI will reduce baculovirus quality		
	• Harvest the virus when 70–80% of cells are dead		
	• You cannot amplify the baculovirus indefinitely, as they acquire deleterious mutations with each passage. Usually, P3 is highest usable passage.		
Amplification	Follow the guidelines below to amplify your P1 viral stock in a 6-well plate.		
Procedure	1. On the day of infection, prepare your Sf9 or Sf21 cell suspension and plate cells at 2×10^6 cells/well. Incubate cells at room temperature for 1 hour to allow attachment.		
	2. After 1 hour, inspect cells under an inverted microscope to verify attachment.		
	3. Add the appropriate amount of P1 viral stock to each well.		
	4. Incubate the cells for 48 hours in a 27°C humidified incubator.		
	5. 48 hours post-infection, collect 2 ml of medium containing virus from each well and transfer to sterile 15 ml snap-cap tubes. Centrifuge the tubes at $500 \times g$ for 5 minutes to remove cells and large debris and to obtain clarified baculoviral stock.		
	Note: It is possible to harvest virus at later times after infection (<i>e.g.,</i> 72 hours). Optimal harvest times can vary and should be determined for each baculoviral construct. Remember that culture viability will decrease over time as cells lyse.		
	6. Transfer the supernatant to fresh 15 ml snap-cap tubes. This is the P2 viral stock. Store at 4°C, protected from light. For long-term storage, you may store an aliquot of the P2 stock at –80°C, protected from light. See page 33 for storage guidelines.		
	7. Proceed to the next section to determine the titer of your P2 viral stock.		
Scaling Up the Amplification Procedure	Once you have generated a high-titer P2 baculoviral stock, you may scale-up the amplification procedure to any volume of your choice. To produce this high-titer P3 stock, scale up the amount of cells and volume of virus used appropriately, and follow the guidelines and procedure outlined in this section.		
Generating High- Titer Stocks From Frozen Master Stock	If you have stored your viral master stock at -80° C, we recommend amplifying this stock to generate another high-titer stock for use in expression experiments. Viral titers generally decrease over time when virus is stored at -80° C. Follow the guidelines and amplification procedure detailed in this section.		

Performing a Viral Plaque Assay

Introduction	 We recommend using the BaculoTiter[™] Assay kit, available separately from Invitrogen, to determine the titer of your baculoviral stock. The BaculoTiter[™] Assay kit provides accurate results for your baculovirus titer in two days as compared to 10-day dilution assays. For more information, refer to our website at www.invitrogen.com or contact Technical Support (page 66). Alternatively, you may follow the guidelines and instructions provided below to: Determine the titer of your baculoviral stock Plaque purify the virus (optional) 	
Experimental Outline	 To determine the titer of a baculoviral stock, you will: Plate Sf9 or Sf21 cells in 6-well plates. Prepare 10-fold serial dilutions of your baculoviral stock. Add the different dilutions of baculovirus to Sf9 or Sf21 cells and infect cells for 1 hour. Remove the virus and overlay the cell monolayer with Plaquing Medium. Incubate the cells for 7–10 days, stain (if desired), and count the number of plaques in each dilution. 	
Factors Affecting Viral Titer	 A number of factors can influence viral titers including: The size of your gene of interest. Titers will generally decrease as the size of the insert increases. The transfection efficiency. For the highest transfection efficiency, we recommend transfecting Sf9 or Sf21 cells using Cellfectin® II Reagent. Prepare DNA:lipid complexes in Grace's Insect Medium, Unsupplemented (see pages 29–31 for details). The age of your baculoviral stock. Viral titers may decrease with long-term storage at 4°C or –80°C. If your baculoviral stock has been stored for 6 months to 1 year, we recommend titering or re-titering your baculoviral stock prior to use in an expression experiment. Number of freeze/thaw cycles. If you are storing your viral stock at –80°C, viral titers can decrease as much as 10% with each freeze/thaw cycle. Improper storage of your baculoviral stock. For routine use, baculoviral stocks should be aliquotted and stored at 4°C, protected from light. 	

Materials Needed	• Your clarified baculoviral stock (store at 4°C until use)
	 Sf9 or Sf21 cells cultured in the appropriate medium (30 ml of log-phase cells at 5 × 10⁵ cells/ml for each baculoviral stock to be titered)
	 Sf-900 II SFM, Sf-900[™] III SFM or other appropriate complete growth medium (see Note below)
	 Sf-900 Medium (1.3X) (100 ml) or other appropriate plaquing medium (see Note below)
	 4% Agarose Gel (specifically formulated for optimal insect cell growth, see page vii)
	• Sterile, cell-culture grade, distilled water
	• 100 ml sterile, glass bottle
	• 6-well tissue-culture plates (2 plates for each viral stock to be titered)
	Sterile hood
	• Waters baths at 40°C and 70°C
	Microwave oven (optional)
	• 27°C humidified incubator
	• Neutral Red, high purity (see page vii)
	See page viii for ordering information.
Note	If you are culturing your Sf9 or Sf21 cells in serum-supplemented media (<i>i.e.,</i> complete TNM-FH), you should have the following reagents on hand:
	Grace's Insect Cell Culture Medium, Supplemented
	• Grace's Insect Cell Culture Medium (2X)
	• Fetal Bovine Serum (FBS), Qualified, Heat-Inactivated
	See page viii for ordering information.

Preparing the Plaquing Medium

Plaquing medium consists of a mixture of culture medium and agarose, and will be used to immobilize the infected cells for the plaque assay. Prepare plaquing medium immediately before use following the procedure below. If you are culturing the Sf9 cells in Sf-900 II SFM, prepare Sf-900 Plaquing Medium. If you are culturing cells in TNM-FH, prepare Grace's Plaquing Medium. **Note:** Other Plaquing Media are suitable.

- 1. Melt the 4% Agarose Gel by placing the bottle in a 70°C water bath for 20 to 30 minutes **or** heating the agarose in a microwave oven. While the 4% agarose gel is melting, place the following in the 40°C water bath:
 - Empty, sterile 100 ml bottle
 - Sf-900 Medium (1.3X) or Grace's Insect Cell Culture Medium (2X), as appropriate
- 2. Once the 4% agarose gel has liquefied, move the agarose gel, medium, and empty 100 ml bottle to a sterile hood.
- 3. Working quickly, prepare the plaquing medium as follows:

Sf-900 Plaquing Medium: Combine 30 ml of Sf-900 Medium (1.3X) and 10 ml of the melted 4% Agarose Gel in the empty 100 ml bottle and mix gently.

Grace's Plaquing Medium: Add 20 ml of heat-inactivated FBS to the 100 ml bottle of Grace's Insect Medium (2X) and mix. Combine 25 ml of the Grace's Insect Medium (2X) containing serum with 12.5 ml of cell-culture grade, sterile, distilled water and 12.5 ml of the melted 4% Agarose Gel in the empty 100 ml bottle and mix gently.

4. Return the bottle of plaquing medium to the 40°C water bath until use.

Plaque Assay Procedure	det bac rece (no Not (two	e the procedure below to perform a plaque assay in 6-well plate format to ermine the titer of your pFastBac [™] baculoviral stock. If you have generated a suloviral stock of the pFastBac [™] expression control pFastBac [™] -Gus, we ommend titering this stock as well. Remember to include a negative control virus) in your experiment. the The amounts provided in this procedure are suitable to titer one baculoviral stock o 6-well plates per viral stock). If you wish to titer more than one baculoviral stock, te up the reagent quantities accordingly.
	1.	On the day of infection, harvest Sf9 or Sf21 cells and prepare a 30 ml cell suspension at 5×10^5 cells/ml in Sf-900 II SFM (or other complete growth medium). Aliquot 2 ml of cell suspension into each well of two 6-well plates. If you are including a negative control, you will need another 6-well plate.
	2.	Allow the cells to settle to the bottom of the plate and incubate, covered, at room temperature for 1 hour.
	3.	Following the 1 hour incubation, observe the cell monolayers using an inverted microscope. Sf9 cells should be attached and at 50% confluence.
	4.	Prepare an 8-log serial dilution $(10^{-1} \text{ to } 10^{-8})$ of the clarified baculoviral stock in Sf-900 II SFM or Grace's Insect Cell Culture Medium, Supplemented, without FBS, as appropriate. To do this, sequentially dilute 0.5 ml of the baculoviral stock or previous dilution in 4.5 ml of medium in 12 ml disposable tubes. You should finish with 8 tubes of diluted viral stock (<i>i.e.</i> , 10^{-1} , 10^{-2} , 10^{-3} , 10^{-4} , 10^{-5} , 10^{-6} , 10^{-7} , 10^{-8}). You will use the dilutions 10^{-4} to 10^{-8} in your assay.
	5.	Move the 6-well plates containing Sf9 cells and the tubes of diluted virus to the sterile hood. Label the plates, in columns of 2 (1 sample well plus 1 duplicate) as follows: no virus (negative control), 10^{-4} , 10^{-5} , 10^{-6} , 10^{-7} , 10^{-8} .
	6.	Remove the medium from each well, discard, and immediately replace with 1 ml of the appropriate virus dilution. As a negative control, add the appropriate medium without virus.
	7.	Incubate cells with virus for 1 hour at room temperature.
	8.	Following the 1 hour incubation, move the cells and the bottle of plaquing medium from the 40°C water bath (Step 4, previous page) to a sterile hood.
	9.	Sequentially starting from the highest dilution (10^{-8}) to the lowest dilution (10^{-4}) , remove the medium containing virus from the wells and replace with 2 ml of plaquing medium. Work quickly to avoid dessication of the cell monolayer.
	10.	Allow agarose overlay to harden for 1 hour at room temperature before moving the plates.
	11.	Incubate the cells in a 27°C humidied incubator for 7–10 days until plaques are visible and ready to count. If you wish to stain plaques to facilitate counting, see the next page. To calculate the titer, see page 41.
		Continued on next page

\approx	Note

To improve the visualization of plaques, stain the plates using Neutral Red. **Crystalline Blue and other plaque staining dyes containing organic solvents are not recommended because they kill the host cells.** To stain plaques, you may do one of the following:

- Prepare an agarose solution containing neutral red and overlay this solution on the plates 4 days post-infection. Count plaques 7–10 days post-infection.
 or
- Prepare a neutral red solution and add to plates for 1–2 hours just prior to counting plaques (7–10 days post-infection).

Important: If you plan to plaque purify your baculovirus, you should **not** stain plaques as neutral red is a known mutagen that can alter your recombinant virus.

 Materials Needed Neutral Red, high purity (see page vii for ordering information) Cell-culture grade, distilled water 	uring	
Cell-culture grade, distilled water	aring	
	aring	
 Sf-900 II SFM or other appropriate complete growth medium (if prepa the agarose solution; see page vii for ordering information) 		
 4% Agarose Gel (if preparing the agarose solution; see page vii for ord information) 	4% Agarose Gel (if preparing the agarose solution; see page vii for ordering information)	
• 40°C water bath (if preparing the agarose solution)		
Neutral Red Preparing a Neutral Red Agarose Overlay (for use on Day 4)		
Staining Procedure1.Prepare a 1 mg/ml Neutral Red solution in Sf-900 II SFM (or other appropriate complete growth medium). Filter-sterilize.		
2. Combine the reagents below in a 50 ml tube and place in a 40° C water	bath.	
1 mg/ml Neutral Red solution 1.5 ml		
Sf-900 II SFM 16.5 ml		
 Microwave 4% Agarose Gel until melted, then place in a 40°C water b 5 minutes. 	Microwave 4% Agarose Gel until melted, then place in a 40°C water bath for 5 minutes.	
 Move the 50 ml tube of Neutral Red solution and the 4% agarose gel t sterile hood. Add 6 ml of 4% agarose gel to the Neutral Red solution. 	Move the 50 ml tube of Neutral Red solution and the 4% agarose gel to a sterile hood. Add 6 ml of 4% agarose gel to the Neutral Red solution.	
 Add 1 ml of the Neutral Red overlay to each well containing plaquing overlay. Once the agarose has hardened, return plates to a 27°C humin incubator until plaques are ready to count. Plaques will appear as cleat on a red monolayer. 	dified	
Procedure continued on next page		

Neutral Red	Procedure continued from previous page		
Staining	Preparing a Neutral Red Stain (for use on Day 7–10 prior to counting plaques)		
Procedure, continued	6. Prepare a 1 mg/ml Neutral Red solution in cell-culture grade, distilled water.		
	 Add 0.5 ml of Neutral Red solution to each well containing plaquing overlay. Incubate for 1 to 2 hours at room temperature. 		
	8. Gently remove excess stain with a pipet or blotter and count the plaques. Plaques will appear as clear spots in a nearly clear gel against a red background.		
Calculating the Titer	Count the number of plaques present in each dilution, then use the following formula to calculate the titer (plaque forming units $(pfu)/ml$) of your viral stock. Note that the optimal range to count is 3 to 20 plaques per well of a 6-well plate.		
	titer (pfu/ml) = number of plaques × dilution factor × $\frac{1}{ml \text{ of inoculum/w ell}}$		
Example	In this example, we add 1 ml of inoculum and observe 20 plaques in the well containing the 10 ⁻⁶ viral dilution. Using the formula above, the titer of this viral stock is:		
	titer (pfu/ml) = 20 plaques $\times 10^6 \times (\frac{1}{1 \text{ ml of inoculum/well}})$		
	titer (pfu/ml) = 2×10^7 pfu/ml		
What You Should See	When titering pFastBac [™] baculoviral stocks, we generally obtain titers ranging from:		
	• 1×10^6 to 1×10^7 pfu/ml for P1 viral stocks		
	• 1×10^7 to 1×10^8 pfu/ml for P2 viral stocks		
	Note: If the titer of your baculoviral stock is less than 1×10^6 pfu/ml or 1×10^7 pfu/ml for a P1 or P2 viral stock, respectively, we recommend producing a new baculoviral stock.		
	See page 36 and the Troubleshooting section, page 50 for more tips and guidelines to optimize your viral yield.		

Plaque Purification	You may generate a viral stock from a single viral clone by plaque purifying your baculovirus, if desired. Use a protocol of your choice or the procedure below.	
	Ma	aterials Needed
	•	Plate containing well-spaced viral plaques (from Plaque Assay Procedure , Step 11, page 39; do not stain plates with Neutral Red)
	٠	Log phase Sf9 or Sf21 cells at greater than 95% viability
	•	Sterile Pasteur pipette and bulb
	Pro	ocedure
	1.	Follow Steps 1–3 in the Plaque Assay Procedure , page 39 to seed Sf9 or Sf21 cells.
	2.	Using a sterile Pasteur pipette and bulb, carefully pick a clear plaque and transfer the agarose plug (containing virus) to a 1.5 ml microcentrifuge tube containing 500 μ l of complete growth medium. Mix well by vortexing.
	3.	Add 100 μ l of the agarose plug solution to each well.
	4.	Incubate the cells in a 27°C humidified incubator for 72 hours.
	5.	Collect the medium containing virus from each well (~2 ml) and transfer to sterile 15 ml snap-cap tubes. Centrifuge the tubes at $500 \times g$ for 5 minutes to remove cells and large debris.
	6.	Transfer the clarified supernatant to fresh 15 ml snap-cap tubes. This is your plaque-purified viral stock.
	7.	Proceed to Amplifying Your Baculoviral Stock , page 34.

Expressing Your Recombinant Protein

Introduction	Once you have generated a pFastBac ^{M} baculoviral stock with a suitable titer (<i>e.g.</i> , 1×10^8 pfu/ml), you are ready to use the baculoviral stock to infect insect cells and assay for expression of your recombinant protein. Guidelines for infection and expression are provided below.	
Positive Control	If you have generated a high-titer viral stock from the pFastBac TM control baculo- viral construct (<i>i.e.</i> , pFastBac-Gus, pFastBac TM HT-CAT, pFastBac TM Dual- Gus/CAT), you may want to include this recombinant baculovirus in your experiments for use as an expression control. Once you have infected cells with the FastBac TM control virus, the gene encoding β-glucuronidase (Gus) and/or chloramphenicol acetyltransferase (CAT) will be constitutively expressed and can be easily assayed (see page 45).	
Guidelines for Expression	General guidelines are provided below to infect insect cells with the recombinant baculovirus to express your protein of interest.	
	 Cell line: Depending on your application and gene of interest, you may use any insect cell line including Sf9, Sf21, High Five[™], or Mimic[™] Sf9 for expression. Cells may be grown in adherent or suspension culture in the culture vessel of choice. Note: If you are expressing a secreted protein, you may improve expression by using High Five[™] cells. 	
	 Culture Conditions: We generally culture cells in serum-free conditions using Sf-900 II SFM, Sf-900[™] III SFM, or Express Five[®] SFM as appropriate (see page viii). Depending on your application and the protein of interest, note that it may be necessary to supplement the culture post-infection with 0.1% to 0.5% FBS or BSA to protect the recombinant protein from proteolysis. Protein-based protease inhibitors are generally less expensive and more effective than many synthetic protease inhibitors. 	
	• Infection Conditions: We recommend infecting cultures while cells are in the mid-logarithmic phase of growth at a density of 1 × 10 ⁶ to 2 × 10 ⁶ cells/ml. Make sure that the culture is not rate-limited by nutritional (<i>i.e.</i> , amino acid or carbohydrate utilization) or environmental factors (<i>i.e.</i> , pH, dissolved O ₂ , or temperature) during infection.	
	• MOI: Optimal MOI will vary between cell lines, and the relative infection kinetics of the virus isolate or clone used. A dose response should be established for each virus, medium, reactor, and cell line employed to determine the optimal infection parameters to use for protein expression. As a starting point, infect cells using an MOI of 1 to 5.	
	 Time course: We recommend performing a time course to determine the expression kinetics for your recombinant protein as many proteins may be degraded by cellular proteases released in cell culture. Note: Maximum expression of secreted proteins is generally observed between 30 and 72 hours and non-secreted proteins between 48 and 96 hours post-infection. 	

Expressing Your Recombinant Protein, continued

Optimizing Expression	 A number of factors can influence determination of optimal expression condition including the cell line, MOI, your application of interest, and the nature of your gene of interest. You may perform the following to determine the optimal conditions to use to express your recombinant protein of interest: Cell line: Infect Sf9, Sf21, High Five[™], or Mimic[™] Sf9 cells at a constant MOI. Assay for recombinant protein expression at different times post-infection (<i>e.</i> 24, 48, 72, 96 hours post-infection). Choose the cell line that provides the optimal level of recombinant protein expression. MOI: Infect a population of cells at varying MOIs (<i>e.g.</i>, 1, 2, 5, 10, 20) and assa for protein expression. Use the MOI that provides the optimal level of recombinant protein expression. 	
	• Time course: Infect cells at a constant MOI and assay for recombinant protein expression at different times post-infection (<i>e.g.</i> , 24, 48, 72, 96 hours post-infection). Choose the time point at which optimal recombinant protein expression is obtained.	
Harvesting Baculovirus Infected Insect Cells	Use the following procedure for harvesting recombinant baculovirus infected insect cells to analyze expression of your recombinant protein of interest. This procedure is adapted from Luckow and Summers and is designed to allow expression analysis in a 24-well format from cells harvested 24 to 96 hours post-infection. Other protocols are also suitable.	
	1. Seed 6×10^5 Sf9 or Sf21 cells per well in a 24-well plate. Let cells attach for at least 30 minutes.	
	2. Remove the media and rinse the cells once with fresh growth media. Replace with 300 μ l of fresh media.	
	3. Add the pFastBac [™] baculoviral stock to each well at the desired MOI. Include the appropriate controls (<i>e.g.</i> , mock-infected (uninfected) cells, pFastBac [™] positive control baculovirus, previously characterized recombinant baculoviruses).	
	4. Incubate cells in a 27°C humidified incubator.	
	5. Harvest cells (or media, if the recombinant protein is secreted) at the appropriate time (<i>i.e.</i> , 24, 48, 72, 96 hours post-infection). If harvesting cells, remove the media and rinse the cells once with serum-free medium.	
	 Lyse the cells with 400 μl of 1X SDS-PAGE Buffer (62.5 mM Tris-HCl, pH 6.8, 2% SDS). 	
	 Freeze samples at -20°C or boil samples for at least 3 minutes and separate proteins by SDS-PAGE. 	
Detecting Recombinant Protein	You may use any method of choice to detect your recombinant protein of interest including functional analysis or western blot. If you perform western blot analysis, you will need to have an antibody to your protein of interest.	

Expressing Your Recombinant Protein, continued

If you have cloned your gene of interest in frame with the 6×His tag in pFastBac[™]HT, the presence of the N-terminal 6×His tag and the recognition site for the AcTEV[™] Protease will increase the size of your protein by at least 3 kDa.

Assay for If you include the baculoviral control created using the pFastBac[™]-Gus or pFastBac[™] Dual-Gus/CAT control constructs in your expression experiment, you β-glucuronidase may assay for β -glucuronidase expression using the following methods. Other methods are suitable. • Identify blue plaques on agarose plates containing the chromogenic indicator, X-glucuronide. To assess β -glucuronidase expression in a rapid but qualitative manner, mix a small amount of media from the infected cells with X-glucuronide and observe development of blue color. Briefly, mix 5 µl of a 20 mg/ml X-glucuronide solution (in DMSO or dimethylformamide) with 50 µl of cellfree medium. Monitor for development of blue color within 2 hours. Assay for CAT If you include the baculoviral control created using the pFastBac[™]HT-CAT or pFastBac[™] Dual-Gus/CAT baculoviral construct in your expression experiment, Protein you may assay for CAT expression using your method of choice. There are commercial kits available for assaying CAT expression as well as a rapid radioactive assay (Neumann *et al.*, 1987). You may use any method of choice to purify your recombinant protein of interest. Purifying Recombinant Refer to published references (Deutscher, 1990; Janson & Ryden, 1989) for general guidelines on protein purification methods. Protein Note: If you have cloned your gene of interest in frame with the 6×His tag in pFastBac[™]HT, you may purify your recombinant protein using a metal-chelating resin such as ProBond[™] or Ni-NTA available from Invitrogen (see page viii for ordering information). Refer to the manual included with each product for guidelines to purify your fusion protein. These manuals are available for downloading from our website (www.invitrogen.com) or by contacting Technical Support (see page 66). Removing the pFastBac[™]HT vector contains a Tobacco Etch Virus (TEV) recognition site that allows the removal of the 6×His tag from your recombinant fusion protein using **N-Terminal Fusion** Tag Using TEV the AcTEV[™] Protease (available separately from Invitrogen, see page vii). Instructions for digestion are included with the product. For more information, Protease contact Technical Support (see page 66). Note: Depending on which restriction enzymes are used for cloning, additional amino acids may be present at the N-terminus of your protein (refer to the diagrams on pages 13-15 for more help).

Troubleshooting

Cloning into the	The table below lists some potential problems that you may encounter when
pFastBac [™] Vectors	generating your pFastBac [™] construct. Possible solutions that may help you troubleshoot your cloning are provided.

Problem	Reason	Solution
Recombinant pFastBac [™] construct lacks insert	Incomplete digestion of pFastBac [™] plasmid or insert DNA	 Use additional restriction enzyme for digestion. Purify insert DNA.
	Incomplete or excessive phosphatase treatment of pFastBac [™] plasmid	Optimize dephosphorylation conditions according to the manufacturer's recommendations for the phosphatase you are using.
	Poor recovery of pFastBac [™] plasmid or insert DNA from agarose gel	Use PureLink [™] Quick Gel Extraction System to purify high quality plasmid DNA from your agarose gel (see page vii).
	Incomplete ligation reactions	• Follow ligation conditions according to the manufacturer's recommendations for the ligase you are using.
		• Optimize ligation reaction by varying vector:insert molar ratios (<i>e.g.</i> , 1:3, 1:1, 3:1).
	Insert contains unstable DNA sequences such as LTR sequences	• Grow transformed cells at lower temperatures (30°C).
	and inverted repeats	 Use MAX Efficiency[®] Stbl2[™] Competent Cells available from Invitrogen (see page vii) for transformation. Stbl2[™] E. coli are specifically designed for cloning unstable inserts.
No or few colonies obtained after	Low transformation efficiency of competent <i>E. coli</i>	• If stored incorrectly, prepare or obtain new competent cells.
transformation		 Use Invitrogen's One Shot[®] TOP10 or One Shot[®] MAX Efficiency[®] DH10B[™]-T1^R Chemically Competent <i>E. coli</i> for transformation (see page vii).
	Impurities in DNA	Purify insert DNA. Make sure to remove excess phenol, proteins, detergents, and ethanol from the DNA solution.

Problem	Reason	Solution
No or few colonies obtained after transformation, continued	Too much DNA transformed	• For chemically competent cells, add 1 to 10 ng of DNA in a volume of 5 µl or less per 100 µl of cells. For electrocompetent cells, add 10 to 50 ng of DNA in a volume of 1 µl or less per 20 µl of cells.
		• If you have purchased competent cells, follow the manufacturer's instructions.
	Incomplete ligation reaction	• Optimize the ligation reaction.
		 Include a ligation control (<i>i.e.</i>, digested pFastBac[™] vector + ligase; no insert). Check the ligation reaction on a gel.
		Note: Ligated products and linear DNA transform 10X and 100–100X less efficiently, respectively than super-coiled DNA (Hanahan, 1983).
	Ligation reaction mix inhibits transformation of competent cells	Reduce the amount of ligation reaction transformed. Dilute ligation reaction 5X with TE Buffer prior to transformation.
	Problem with antibiotic	• Confirm use of the correct antibiotic; confirm antibiotic concentration.
		• Check that the antibiotic is not degraded (<i>i.e.,</i> change in color of solution or the appearance of precipitate). Use fresh antibiotic.
	Competent cells stored improperly	Store competent cells at -80°C.
	Competent cells handled improperly	Thaw cells on ice; use immediately after thawing; do not vortex.
	Cells not heat-shocked or incubated properly during transformation	Follow the recommended transformation procedure for the cells you are using.

Cloning into the pFastBac[™] Vectors, continued

Troubleshooting, continued

Generating
Recombinant
Bacmid DNAThe table below lists some potential problems that you may encounter when
generating the recombinant bacmid following transformation into DH10BacTM
E. coli. Possible solutions that may help you troubleshoot the transposition
reaction are provided.

Problem	Reason	Solution
No blue (non-recombi- nant) colonies obtained (<i>i.e.</i> , all colonies are white) Note: Although you will	Insufficient time for color development	Wait at least 48 hours before identifying colony phenotypes.
	Used X-gal instead of Bluo-gal in agar plates	Use Bluo-gal in selective plates to increase the contrast between blue and white colonies.
pick white colonies, you should expect to see some blue colonies. Blue colonies contain non-	Insufficient growth after transposition	Grow transformed cells in S.O.C. Medium for a minimum of 4 hours before plating.
recombinant bacmids.	Bluo-gal and IPTG omitted from plates	Prepare fresh selective plates containing 50 µg/ml kanamycin, 7 µg/ml gentamicin, 10 µg/ml tetracycline, 100 µg/ml Bluo-gal, and 40 µg/ml IPTG.
	Too many colonies on the plate	• Serially dilute the transformation mixture and plate to give well-separated colonies.
		• Adjust the serial dilutions of cells (10 ⁻² to 10 ⁻⁴) to obtain well-spaced colonies.
	Plates too old or stored in light	• Do not use plates that are more than 4 weeks old.
		• Store plates protected from light.
	Incubation period too short or temperature too low	Wait at least 48 hours before picking colonies. Incubate plates at 37°C.
All colonies are blue	pFastBac [™] DNA used for transformation was of poor	• Use purified plasmid DNA for transformation.
	quality	• Check the quality of your plasmid DNA; make sure that the DNA is not degraded.
	Gentamicin omitted from plates	Prepare fresh selective plates containing 50 μg/ml kanamycin, 7 μg/ml gentamicin, 10 μg/ml tetracycline, 100 μg/ml Bluo-gal, and 40 μg/ml IPTG.

Problem	Reason	Solution
Few colonies obtained	Used LB medium for recovery/expression period	Use S.O.C. Medium for the 4 hours growth time.
	Recovery/expression time too short	Increase the recovery time to > 4 hours at 37°C or 6 hours at 30°C.
Poor blue/white colony differentiation	Agar not at correct pH	Adjust pH of LB agar to 7.0.
	Intensity of the blue color too	• Use Bluo-gal, not X-gal.
	weak	 Increase the concentration of Bluo- gal to 300 µg/ml.
		• Use dark and light backgrounds to view plates.
	Too many or too few colonies on plate	Adjust the serial dilutions of cells to obtain an optimal number of colonies.
	Incubation period too short or temperature too low	• Do not pick colonies until 48 hours after plating.
		• Incubate plates at 37°C.
	IPTG concentration not optimal	Optimize the IPTG concentration. A range of $20-60 \ \mu g/ml$ IPTG generally gives optimal color development.

Generating Recombinant Bacmid DNA, continued

Isolating BacmidThe table below lists some potential problems and possible solutions to help you
troubleshoot recombinant bacmid DNA isolation.

Problem	Reason	Solution
Bacmid DNA is degraded	DNA stored improperly	• Store purified bacmid DNA in aliquots at -20°C.
		• Do not freeze/thaw repeatedly.
	High molecular weight bacmid DNA handled improperly	• When isolating bacmid DNA, do not vortex the DNA solution.
		• Do not resuspend DNA pellets mechanically; allow the solution to sit in the tube with occasional gentle tapping of the bottom of the tube.

Isolating Bacmid DNA, continued

Problem	Reason	Solution
Poor yield	Used incorrect antibiotic concentrations	Grow transformed DH10Bac [™] cells in LB medium containing 50 µg/ml kanamycin, 7 µg/ml gentamicin, and 10 µg/ml tetracycline.
Bacmid DNA contains a mixture of recombinant bacmid and empty bacmid	Picked a colony that was gray or dark in the center	Analyze more white DH10Bac [™] transformants and choose one that contains recombinant bacmid DNA only.

TransfectingThe table below lists some potential problems and possible solutions that mayInsect Cellshelp you troubleshoot insect cell transfection.

Problem	Reason	Solution	
Low yield of virus	Low transfection efficiency	Use Invitrogen's Cellfectin [®] II Reagent for transfection.	
		• Perform transfection in Grace's Medium, Unsupplemented; make sure that no supplements, FBS, or antibiotics are present during transfection.	
		 Harvest viral supernatant when signs of infection are visible (<i>i.e.</i>, >96 hours post-transfection). 	
	Cells plated too sparsely	Plate insect cells at the recommended cell density.	
	Used too much or too little Cellfectin® II or other lipid reagent	Optimize the amount of Cellfectin [®] II or other lipid reagent used.	
	Time of incubation with DNA:lipid complexes too short or too long	Optimize the incubation time (<i>e.g.</i> , 3 to 8 hours).	
	Recombinant bacmid DNA is degraded	• Check the quality of your recombinant DNA by agarose gel electrophoresis prior to transfection.	
		 Prepare bacmid DNA using Invitrogen's PureLink[™] HiPure Plasmid DNA Miniprep or Maxiprep Kit (see page vii for ordering information) or use the procedure provided on page 54. 	

Transfecting Insect Cells, continued

Problem	Reason	Solution
Low yield of virus, continued	Bacmid DNA is not pure (<i>i.e.,</i> contains recombinant bacmid and empty bacmid)	• Screen other DH10Bac [™] transformants and choose one that contains only recombinant bacmid.
		• Perform plaque purification to isolate recombinant baculovirus.

Expressing Your
ProteinThe table below lists some potential problems and possible solutions that may
help you troubleshoot your expression experiments.

Problem	Reason	Solution
Low protein yield	Viral stock contains a mixture of recombinant and non- recombinant baculovirus	Perform plaque purification to isolate recombinant baculovirus.
	Baculovirus not recombinant	• Verify transposition by PCR analysis of bacmid DNA using the pUC/M13 Forward and Reverse primers.
		• Re-transfect insect cells with new recombinant bacmid DNA.
	Used too low or too high viral titer	Optimize infection conditions by varying the MOI.
	Time of cell harvest not optimal	Perform a time course of expression to determine the optimal time to obtain maximal protein expression.
	Cell growth conditions and medium not optimal	• Optimize culture conditions based on the size of your culture vessel and expression conditions.
		• Culture cells in Sf-900 II SFM or Sf-900 [™] III SFM for optimal cell growth and protein expression.
	Cell line not optimal	Try other insect cell lines.

Appendix

Recipes			
Antibiotic Sto Solutions	premixed s	can be ordered in either dry powdered olution. Store these solutions according dations. For the antibiotics below, prep s directed:	g to the manufacturer's
	Antibiotic	Stock Solution Concentration	Storage
	Ampicillin	50 mg/ml in water; filter-sterilize	–20°C, protected from light
	Kanamycin	10 mg/ml in water; filter-sterilize	–20°C, protected from light
	Tetracycline*	10 mg/ml in 100% ethanol; filter- sterilize	–20°C, protected from light
	Gentamicin	7 mg/ml in water; filter-sterilize	–20°C, protected from light
IPTG	 Dissolv Adjust Filter-s Dispen 	procedure below to prepare a 200 mg/ re 2 g of IPTG in 8 ml of sterile water. the volume of the solution to 10 ml wi terilize through a 0.22 micron filter. use the stock solution into 1 ml aliquots t -20° C.	th sterile water.
Bluo-gal	 Dissolv to mak Import Dispen Do not 	guidelines below to prepare a 20 mg/n ve the Bluo-gal in dimethylformamide e a 20 mg/ml stock solution. Use a glas tant: Exercise caution when working w use solutions in a vented chemical hood filter the stock solution. t –20°C protected from light.	or dimethyl sulfoxide (DMSO) ss or polypropylene tube. ith dimethylformamide.

Recipes, continued

LB (Luria-Bertani) Medium	 Composition: 1.0% Tryptone (casein peptone) 0.5% Yeast Extract 1.0% NaCl pH 7.0 1. For 1 liter, dissolve 10 g tryptone, 5 g yeast extract, and 10 g NaCl in 950 ml deionized water. 2. Adjust the pH of the solution to 7.0 with NaOH and bring the volume up to 1 liter. 3. Autoclave on liquid cycle for 20 minutes. Allow solution to cool to ~55°C and add antibiotic if needed. 4. Store at room temperature or at 4°C.
LB (Luria-Bertani) Plates	 Follow the procedure below to prepare LB agar plates. Prepare LB medium as above, but add 15 g/liter agar before autoclaving. Autoclave on liquid cycle for 20 minutes. After autoclaving, cool to ~55°C, add antibiotic(s) and pour into 10 cm plates. Let harden, then invert and store at 4°C, in the dark. Plates containing antibiotics are stable for up to 4 weeks.
	LB agar selective plates for DH10Bac [™] transformation
	 Follow Steps 1-2 in the procedure above. After autoclaving, cool to ~55°C, and add the following:
	 50 μg/ml kanamycin 7 μg/ml gentamicin 10 μg/ml tetracycline 100 μg/ml Bluo-gal 40 μg/ml IPTG
	3. Let harden, then invert and store at 4°C, in the dark. Tetracycline and Bluo-gal are light sensitive, so make sure that plates are stored protected from light.

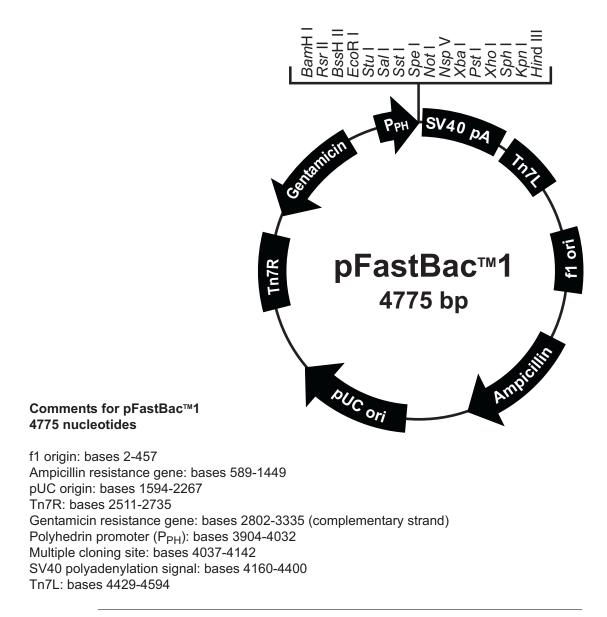
Bacmid DNA Isolation Using PureLink[™] HiPure Maxiprep Kit

Introduction	After you have transformed your pFastBac [™] construct containing your gene of interest into the appropriate competent <i>E. coli</i> and performed the transposition reaction, use the PureLink [™] HiPure Plasmid Maxiprep Kit to purify recombinant bacmid DNA from the transformed <i>E. coli</i> (see page vii for ordering information). Bacmid DNA purified by this method is suitable for use in PCR analysis or insect cell transfections. Note: We do not recommend the PureLink [™] HiPure Precipitator Module or the PureLink [™] HiPure Plasmid Filter Mini/Midi/Maxiprep Kits for isolating bacmid DNA.
	For more information on PureLink [™] HiPure purification products, visit our website at www.invitrogen.com or contact Technical Support (see page 66).
Growing Bacmid DNA Stock	Growing bacmid DNA stock from <i>E. coli</i> transformants in LB medium requires three days.
	Day 1:
	 Pick a single white bacterial colony from among the transformants (see page 18) and inoculate 4 ml of LB medium containing 50 µg/ml kanamycin, 7 µg/ml gentamicin and 10 µg/ml tetracycline. Alternatively, you can thaw glycerol stocks of DH10Bac[™] cells harboring your verified recombinant bacmid and use 100 µl to inoculation.
	• Incubate the culture at 37°C in a shaking water bath at 250 rpm overnight.
	Day 2:
	• Transfer the entire 4 ml of overnight culture into 50 ml of fresh LB medium with antibiotics (as above) and incubate at 37°C in a shaking water bath at 250 rpm overnight.
	Day 3:
	• Transfer the entire 50 ml of overnight culture into 500 ml of fresh LB medium with antibiotics (as above) and incubate at 37°C in a shaking water bath at 250 rpm overnight.
	On Day 4, proceed with the PureLink ^{TM} HiPure bacmid DNA isolation procedure as described on the next page.
	Continued on next page

Bacmid DNA Isolation Using PureLink[™] HiPure Maxiprep Kit, continued

Before Starting	Before beginning, verify that RNase A has been added to the Resuspension Buffer (R3) and that no precipitate has formed in the Lysis Buffer (L7).		
Equilibrating the Column	Place the PureLink [™] HiPure Maxi column on the PureLink [™] Nucleic Acid Purification Rack (see the manual supplied with the rack for more details). Apply 30 ml Equilibration Buffer (EQ1) to the column. Allow the solution in the column to drain by gravity flow. Proceed to Preparing the Cell Lysate (next page) while the column is equilibrating.		
Preparing the Cell Lysate	1.	Harvest 250–500 ml of the overnight culture by centrifuging at $4,000 \times g$ for 10 minutes in a bucket. Remove all medium.	
	2.	Add 20 ml Resuspension Buffer (R3) with RNase A to the pellet and resuspend the cells until homogeneous. Transfer cell suspension to a 50-ml centrifuge tube.	
	3.	Add 20 ml Lysis Buffer (L7). Mix gently by inverting the capped tube five times. Do not vortex. Incubate at room temperature for 5 minutes. Note: Do not allow lysis to proceed for more than 5 minutes.	
	4.	Add 20 ml Precipitation Buffer (N3) and mix immediately by inverting the capped tube until the mixture is homogeneous. Do not vortex .	
	5.	Centrifuge the mixture at >12,000 × g at room temperature for 10 minutes. Note: If the pellet does not adhere to the bottom of the tube, incubate the tube at room temperature for 5 minutes to allow the separation of the lysate and gelatinous pellet. Pipette the clear lysate into another tube and centrifuge at >15,000 × g for 5 minutes at room temperature to remove any remaining cellular debris.	
Binding and Washing the DNA	1.	Load the supernatant from Step 5 (see above) onto the equilibrated column. Allow the solution in the column to drain by gravity flow.	
-	2.	Wash the column with 60 ml Wash Buffer (W8). Allow the solution in the column to drain by gravity flow after each wash. Discard the flow-through.	

Bacmid DNA Isolation Using PureLink[™] HiPure Maxiprep Kit, continued

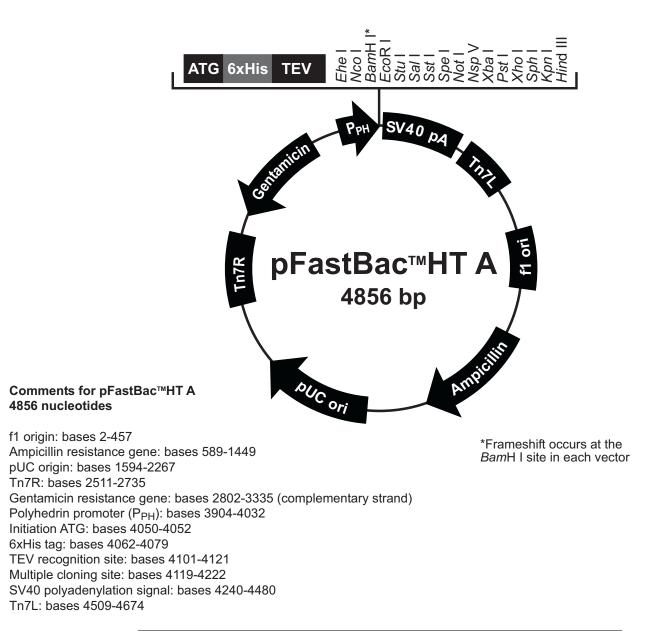

Eluting and	1.	Place a sterile 30 ml centrifuge tube (elution tube) under the column.
Precipitating the DNA	2.	Add 15 ml Elution Buffer (E4) to the column to elute DNA. Allow the solution to drain by gravity flow. Do not force out any remaining solution. The elution tube contains the purified DNA. Discard the column.
	3.	Add 10.5 ml isopropanol to the elution tube. Mix well.
	4.	Centrifuge the mixture at >15,000 \times g at 4°C for 30 minutes. Carefully remove and discard the supernatant.
	5.	Add 1 ml 70% ethanol to the pellet in the 30 ml elution tube, displace the pellet from the side of the tube, and transfer all the pellet fragments into a 1.5 ml microcentrifuge tube.
	6.	Centrifuge at >15,000 \times g at 4°C for 10 minutes. Carefully remove and discard the supernatant.
	7.	Add another 1 ml fresh 70% ethanol to the pellet in the microcentrifuge tube, and centrifuge at >15,000 \times g at 4°C for another 10 minutes (second wash). Carefully remove and discard the supernatant.
	8.	Air-dry the pellet at room temperature until the appearance of the pellet changes from white-opaque to translucent and crystalline.
	9.	Resuspend the DNA pellet in 200–500 μ l TE Buffer, pH 8.0 by vortexing.
	10.	Measure the concentration of the purified bacmid DNA. The concentration should be in range of 150–300 ng/ml
	11.	Store the tube at 4°C
		do not recommend storing the purified bacmid DNA by freezing at –20°C as ecreases the transfection efficiency. You can store the purified bacmid DNA

It decreases the transfection efficiency. You can store the purified bacmid DNA for up to 2 weeks at 4°C in TE Buffer, pH 8.0. You can prepare glycerol stocks of DH10BacTM *E. coli* containing the bacmid DNA

from mid-logarithmic phase culture grown from white colonies picked during the blue-white screening and store at –80°C for future bacmid DNA isolation.

pFastBac[™]1 Map

The map below shows the elements of pFastBac[™]1. The vector sequence of pFastBac[™]1 is available from our website (www.invitrogen.com) or by contacting Technical Support (see page 66).


Map and Features of pFastBac[™]1, continued

Features of the Vector

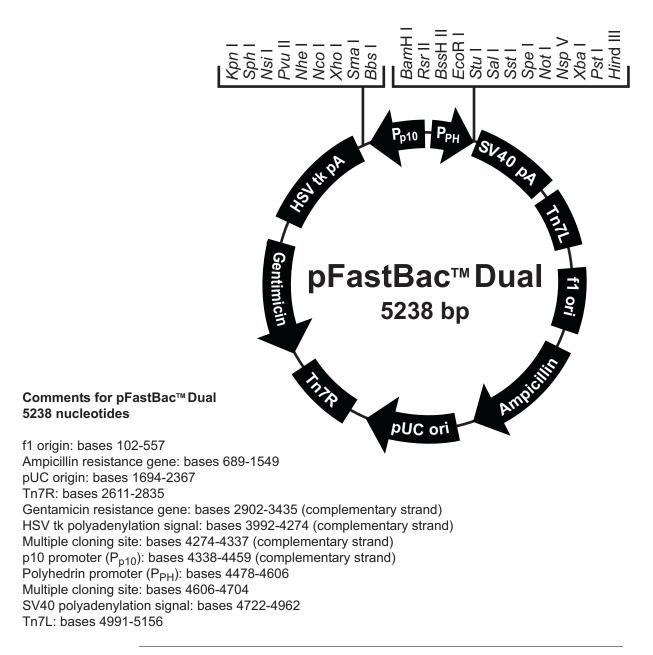
pFastBac^M1 (4775 bp) contains the following elements. All features have been functionally tested.

Feature	Benefit
Polyhedrin promoter (P _{PH})	Allows efficient, high-level expression of your recombinant protein in insect cells (O'Reilly <i>et al.</i> , 1992).
Multiple cloning site	Allows restriction enzyme-mediated cloning of your gene of interest.
SV40 polyadenylation signal	Permits efficient transcription termination and polyadenylation of mRNA (Westwood <i>et al.,</i> 1993).
Tn7L and Tn7R	Mini Tn7 elements that permit site-specific transposition of the gene of interest into the baculovirus genome (<i>i.e.</i> , bmon14272 bacmid) (Luckow <i>et al.</i> , 1993).
f1 origin	Allows rescue of single-stranded DNA.
Ampicillin resistance gene	Allows selection of the plasmid in <i>E. coli</i> .
pUC origin	Permits high-copy replication and maintenance in <i>E. coli</i> .
Gentamicin resistance gene	Permits selection of the recombinant bacmid in DH10Bac TM <i>E. coli</i> .

pFastBac™HT AThe map below shows the elements of pFastBac™HT A. The vector sequences of
the pFastBac™HT A, B, and C vectors are available from our website
(www.invitrogen.com) or by contacting Technical Support (see page 66).

Map and Features of pFastBac[™]HT, continued

Features of the Vector


The pFastBacTMHT A (4856 bp), B (4857 bp), and C (4858 bp) vectors contain the following elements. All features have been functionally tested.

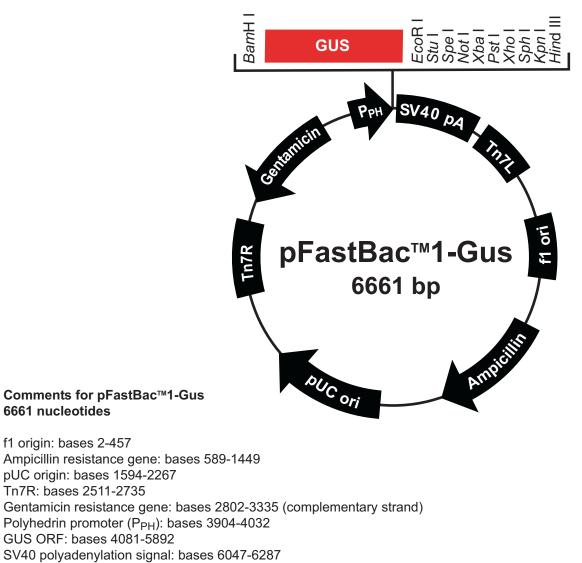
Feature	Benefit
Polyhedrin promoter (P_{PH})	Allows efficient, high-level expression of your recombinant protein in insect cells (O'Reilly <i>et al.</i> , 1992).
6×His tag	Allows purification of your recombinant protein using a metal-chelating resin such as ProBond [™] or Ni-NTA (see page viii).
TEV recognition site	Permits removal of the N-terminal tag from your recombinant protein using AcTEV [™] Protease (Carrington & Dougherty, 1988; Dougherty <i>et al.</i> , 1988).
Multiple cloning site	Allows restriction enzyme-mediated cloning of your gene of interest.
SV40 polyadenylation signal	Permits efficient transcription termination and polyadenylation of mRNA (Westwood <i>et al.</i> , 1993).
Tn7L and Tn7R	Mini Tn7 elements that permit site-specific transposition of the gene of interest into the baculovirus genome (<i>i.e.</i> , bmon14272 bacmid) (Luckow <i>et al.</i> , 1993).
f1 origin	Allows rescue of single-stranded DNA.
Ampicillin resistance gene	Allows selection of the plasmid in <i>E. coli</i> .
pUC origin	Permits high-copy replication and maintenance in <i>E. coli</i> .
Gentamicin resistance gene	Permits selection of the recombinant bacmid in DH10Bac [™] <i>E. coli</i> .

Map and Features of pFastBac[™] Dual

pFastBac[™] DualThe map below shows theMappFastBac[™] Dual is availcontacting Technical Survey

The map below shows the elements of pFastBac[™] Dual. The vector sequence of pFastBac[™] Dual is available from our website (www.invitrogen.com) or by contacting Technical Support (see page 66).

Map and Features of pFastBac[™] Dual, continued

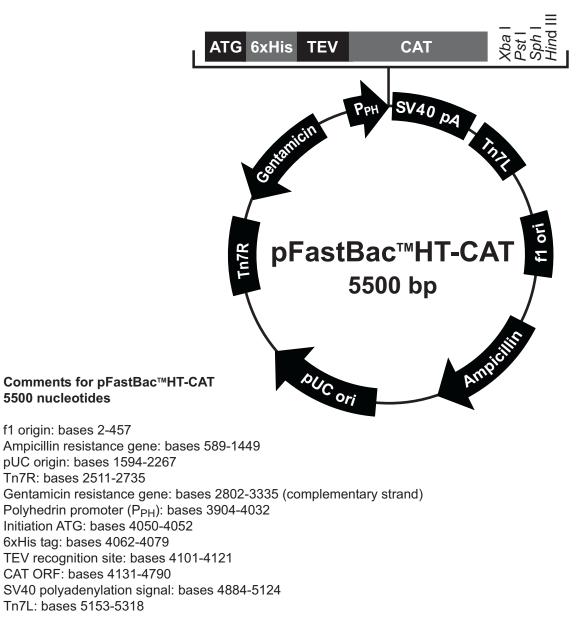

Features of the Vector

pFastBac[™] Dual (5238 bp) contains the following elements. All features have been functionally tested.

Feature	Benefit
Polyhedrin promoter (P _{PH})	Allows efficient, high-level expression of your recombinant protein in insect cells (O'Reilly <i>et al.</i> , 1992).
Multiple cloning site	Allows restriction enzyme-mediated cloning of your gene of interest.
SV40 polyadenylation signal	Permits efficient transcription termination and polyadenylation of mRNA (Westwood <i>et al.,</i> 1993).
Tn7L and Tn7R	Mini Tn7 elements that permit site-specific transposition of the gene of interest into the baculovirus genome (<i>i.e.,</i> bmon14272 bacmid) (Luckow <i>et al.,</i> 1993).
f1 origin	Allows rescue of single-stranded DNA.
Ampicillin resistance gene	Allows selection of the plasmid in <i>E. coli</i> .
pUC origin	Permits high-copy replication and maintenance in <i>E. coli</i> .
Gentamicin resistance gene	Permits selection of the recombinant bacmid in DH10Bac ^{TM} <i>E. coli</i> .
Herpes Simplex Virus (HSV) thymidine kinase (tk) polyadenylation signal	Allows efficient transcription termination and polyadenylation of mRNA (Cole & Stacy, 1985).
Multiple cloning site (P _{p10})	Allows restriction enzyme-mediated cloning of your gene of interest.
p10 promoter (P _{p10})	Allows efficient, high-level expression of your recombinant protein in insect cells (O'Reilly <i>et al.</i> , 1992).

Map of pFastBac[™]-Gus

Description	pFastBac TM -Gus is a 6661 bp control vector containing the <i>Arabidopsis thaliana</i> gene for β -glucuronidase (Gus) (Kertbundit <i>et al.</i> , 1991), and was generated by restriction cloning of the Gus gene into pFastBac TM 1. The molecular weight of β -glucuronidase is 68.5 kDa.	
pFastBac [™] -Gus Map	The figure below summarizes the features of the pFastBac [™] -Gus vector. The vector sequence of pFastBac[™]-Gus is available from our website (www.invitrogen.com) or by contacting Technical Support (see page 66).	

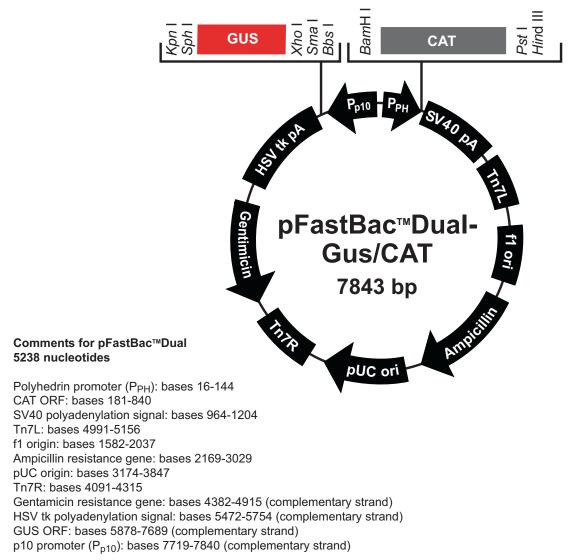


Tn7L: bases 6315-6480

Map of pFastBac[™]HT-CAT

Description	pFastBac [™] HT-CAT is a 5500 bp control vector containing the gene for chloramphenicol acetyltransferase (CAT), and was generated by restriction cloning of the CAT gene into pFastBac [™] HT. The CAT gene is expressed as a fusion to the N-terminal 6×His tag. The molecular weight of the fusion protein is 28 kDa.
	20 NDa.

pFastBac[™]HT-CAT The figure below summarizes the features of the pFastBac[™]HT-CAT vector. The vector sequence of pFastBac[™]HT-CAT is available from our website (www.invitrogen.com) or by contacting Technical Support (see page 66).



Map of pFastBac[™] Dual-Gus/CAT

DescriptionpFastBac™ Dual-Gus/CAT is a 7843 bp control vector containing the Arabidopsis
thaliana gene for β-glucuronidase (Gus) (Kertbundit et al., 1991) and the
chloramphenicol acetyltransferase (CAT) gene. The vector was generated by
restriction cloning of the Gus and CAT genes into pFastBac™ Dual. Expression of
CAT and Gus are controlled by the polyhedrin (P_H) and p10 promoters,
respectively. The molecular weight of β-glucuronidase and CAT are 68.5 kDa
and 26 kDa, respectively.

pFastBac[™] Dual-Gus/CAT Map

The figure below summarizes the features of the pFastBac[™] Dual-Gus/CAT vector. The vector sequence of pFastBac[™] Dual-Gus/CAT is available from our website (www.invitrogen.com) or by contacting Technical Support (see page 66).

Technical Support

World Wide Web	Technical applicationCompleteAccess to	rogen website at www.invitrogen , resources, including manuals, vec on notes, MSDSs, FAQs, formulation technical support contact informa the Invitrogen Online Catalog al product information and special	tor maps and sequences, ns, citations, handbooks, etc. tion
Contact Us		rmation or technical assistance, cal offices are listed on our Web page	
Corporate Headquarters: Invitrogen Corporation 5791 Van Allen Way Carlsbad, CA 92008 USA Tel: 1 760 603 7200 Tel (Toll Free): 1 800 955 6288 Fax: 1 760 602 6500 E-mail: tech_support@invitrogen.com		Japanese Headquarters: Invitrogen Japan LOOP-X Bldg. 6F 3-9-15, Kaigan Minato-ku, Tokyo 108-0022 Tel: 81 3 5730 6509 Fax: 81 3 5730 6519 E-mail: jpinfo@invitrogen.com	European Headquarters: Invitrogen Ltd Inchinnan Business Park 3 Fountain Drive Paisley PA4 9RF, UK Tel: 44 (0) 141 814 6100 Tech Fax: 44 (0) 141 814 6117 E-mail: eurotech@invitrogen.com
MSDS	MSDSs (Materi	al Safety Data Sheets) are available at	www.invitrogen.com/msds.
Certificate of Analysis	product and is	of Analysis (CofA) provides detailed of searchable by product lot number, wh ar website at www.invitrogen.com/su	ich is printed on each box. CofAs are
Limited Warranty	 Invitrogen is committed to providing our customers with high-quality goods and services. Our goal is to ensure that every customer is 100% satisfied with our products and our service. If you should have any questions or concerns about an Invitrogen product or service, contact our Technical Support Representatives. Invitrogen warrants that all of its products will perform according to specifications stated on the certificate of analysis. The company will replace, free of charge, any product that does not meet those specifications. This warranty limits Invitrogen Corporation's liability only to the cost of the product. No warranty is granted for products beyond their listed expiration date. No warranty is applicable unless all product components are stored in accordance with instructions. Invitrogen reserves the right to select the method(s) used to analyze a product unless Invitrogen agrees to a specified method in writing prior to acceptance of the order. Invitrogen makes every effort to ensure the accuracy of its publications, but realizes that the occasional typographical or other error is inevitable. Therefore Invitrogen makes no warranty of any kind regarding the contents of any publications or documentation. If you discover an error in any of our publications, please report it to our Technical Support Representatives. Invitrogen assumes no responsibility or liability for any special, incidental, indirect or consequential loss or damage whatsoever. The above limited warranty is sole and exclusive. No other warranty is made, whether expressed or implied, including any warranty of merchantability or fitness for a particular purpose. 		

Purchaser Notification

Introduction	Use of the Bac-to-Bac [®] Baculovirus Expression System and the Bac-to-Bac [®] vectors is covered under the licenses detailed below.
Information for European Customers	The DH10Bac ^{$^{\text{M}}$} strain is genetically modified and carries the pBR322-derived plasmid, pMON7124 (<i>bom</i> ⁺ , <i>tra</i> ⁻ , <i>mob</i> ⁻). As a condition of sale, this product must be in accordance with all applicable local legislation and guidelines including EC Directive 90/219/EEC on the contained use of genetically modified organisms.
Limited Use Label License No. 5: Invitrogen Technology	The purchase of this product conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product in research conducted by the buyer (whether the buyer is an academic or for-profit entity). The buyer cannot sell or otherwise transfer (a) this product (b) its components or (c) materials made using this product or its components to a third party or otherwise use this product or its components or materials made using this product or its components for Commercial Purposes. The buyer may transfer information or materials made through the use of this product to a scientific collaborator, provided that such transfer is not for any Commercial Purpose, and that such collaborator agrees in writing (a) not to transfer such materials to any third party, and (b) to use such transferred materials and/or information solely for research and not for Commercial Purposes. Commercial Purposes means any activity by a party for consideration and may include, but is not limited to: (1) use of the product or its components in manufacturing; (2) use of the product or its components for therapeutic, diagnostic or prophylactic purposes; or (4) resale of the product or its components, whether or not such product or its components are resold for use in research. For products that are subject to multiple limited use label licenses, the terms of the most restrictive limited use label license shall control. Life Technologies Corporation will not assert a claim against the buyer of infringement of patents owned or controlled by Life Technologies Corporation which cover this product has quot or its components was employed, provided that neither this product nor any of its components was employed, provided that neither this product tor any of its components was used in the manufacture of such product. If the purchaser is not willing to accept return of the product or the technology em- bedded in it for any use other than for research use please contact Out Licensing, Life Technologies, 5791 Van
Limited Use Label License No. 21: Bac-to-Bac [®] and Bac-to-Bac [®] HT	This product is the subject of U.S. Patent No. 5,348,886. This product is sold un- der patent license from Monsanto for research purposes only and no license for commercial use is included. Requests for licenses for commercial manufacture or use should be directed to Director, Monsanto Corporate Research, 800 N. Lindbergh, St. Louis, Missouri 63167.

References

- Anderson, D., Harris, R., Polayes, D., Ciccarone, V., Donahue, R., Gerard, G., and Jessee, J. (1996) Rapid Generation of Recombinant Baculoviruses and Expression of Foreign Genes Using the Bac-To-Bac® Baculovirus Expression System. Focus *17*, 53-58
- Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (1994) *Current Protocols in Molecular Biology*, Greene Publishing Associates and Wiley-Interscience, New York
- Barry, G. F. (1988) A Broad Host-Range Shuttle System for Gene Insertion into the Chromosomes of Gram-negative Bacteria. Gene 71, 75-84
- Carrington, J. C., and Dougherty, W. G. (1988) A Viral Cleavage Site Cassette: Identification of Amino Acid Sequences Required for Tobacco Etch Virus Polyprotein Processing. Proc. Natl. Acad. Sci. USA *85*, 3391-3395
- Ciccarone, V. C., Polayes, D., and Luckow, V. A. (1997) *Generation of Recombinant Baculovirus DNA in E. coli Using Baculovirus Shuttle Vector*. Methods in Molecular Medicine (Reischt, U., Ed.), 13, Humana Press Inc., Totowa, NJ
- Cole, C. N., and Stacy, T. P. (1985) Identification of Sequences in the Herpes Simplex Virus Thymidine Kinase Gene Required for Efficient Processing and Polyadenylation. Mol. Cell. Biol. 5, 2104-2113
- Deutscher, M. P. (ed) (1990) *Guide to Protein Purification* Vol. 182. Methods in Enzymology. Edited by Abelson, J. N., and Simon, M. I., Academic Press, San Diego, CA.
- Dougherty, W. G., Carrington, J. C., Cary, S. M., and Parks, T. D. (1988) Biochemical and Mutational Analysis of a Plant Virus Polyprotein Cleavage Site. EMBO J. 7, 1281-1287
- Hanahan, D. (1983) Studies on Transformation of Escherichia coli with Plasmids. J. Mol. Biol. 166, 557-580
- Harris, R., and Polayes, D. (1997) A New Baculovirus Expression Vector for the Simultaneous Expression of Two Heterologous Proteins in the Same Insect Cell. Focus 19, 6-8
- Janson, J. C., and Ryden, L. (1989) in *Protein Purification: Principles, High Resolution Methods, and Applications,* VCH Publishers, New York
- Kertbundit, S., Greve, H. d., Deboeck, F., Montagu, M. V., and Hernalsteens, J. P. (1991) *In vivo* Random bglucuronidase Gene Fusions in *Arabidopsis thaliana*. Proc. Natl. Acad. Sci. USA *88*, 5212-5216
- King, L. A., and Possee, R. D. (1992) *The Baculovirus Expression System: A Laboratory Guide*, Chapman and Hall, New York, NY
- Luckow, V. A. (1991) in *Recombinant DNA Technology and Applications* (Prokop, A., Bajpai, R. K., and Ho, C., eds), McGraw-Hill, New York
- Luckow, V. A., Lee, C. S., Barry, G. F., and Olins, P. O. (1993) Efficient Generation of Infectious Recombinant Baculoviruses by Site-Specific Transposon-Mediated Insertion of Foreign Genes into a Baculovirus Genome Propagated in *Escherichia coli*. J. Virol. 67, 4566-4579
- Luckow, V. A., and Summers, M. D. (1988) Signals Important for High-Level Expression of Foreign Genes in *Autographa californica* Nuclear Polyhedrosis Virus Expression Vectors. Virology 167, 56-71
- Neumann, J. R., Morency, C. A., and Russian, K. O. (1987) A Novel Rapid Assay for Chloramphenicol Acetyltransferase Gene Expression. BioTechniques 5, 444-447

References, continued

- O'Reilly, D. R., Miller, L. K., and Luckow, V. A. (1992) *Baculovirus Expression Vectors: A Laboratory Manual*, W. H. Freeman and Company, New York, N. Y.
- Polayes, D., Harris, R., Anderson, D., and Ciccarone, V. (1996) New Baculovirus Expression Vectors for the Purification of Recombinant Proteins from Insect Cells. Focus 18, 10-13
- Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) *Molecular Cloning: A Laboratory Manual*, Second Ed., Cold Spring Harbor Laboratory Press, Plainview, New York
- Westwood, J. A., Jones, I. M., and Bishop, D. H. L. (1993) Analyses of Alternative Poly(A) Signals for Use in Baculovirus Expression Vectors. Virology 195, 90-93

©1998-2009 Invitrogen Corporation. All rights reserved. For research use only. Not intended for any animal or human therapeutic or diagnostic use.

invitrogen®

Corporate Headquarters Invitrogen Corporation 5791 Van Allen Way Carlsbad, CA 92008 T: 1 760 603 7200 F: 1 760 602 6500 E: tech_support@invitrogen.com

For country-specific contact information, visit our web site at www.invitrogen.com